Remote characterization of physical surface characteristics of Mars using diurnal variations in apparent thermal inertia

Icarus ◽  
2020 ◽  
Vol 345 ◽  
pp. 113739
Author(s):  
Cameron B. McCarty ◽  
Jeffrey E. Moersch
Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 473
Author(s):  
Dilyana Gospodonova ◽  
Iliana Ivanova ◽  
Todorka Vladkova

The aim of this study was to prepare TiO2/Ag/Cu magnetron co-sputtered coatings with controlled characteristics and to correlate them with the antimicrobial activity of the coated glass samples. The elemental composition and distribution, surface morphology, wettability, surface energy and its component were estimated as the surface characteristics influencing the bioadhesion. Well expressed, specific, Ag/Cu concentration-dependent antimicrobial activity in vitro was demonstrated toward Gram-negative and Gram-positive standard test bacterial strains both by diffusion 21 assay and by Most Probable Number of surviving cells. Direct contact and eluted silver/coper nanoparticles killing were experimentally demonstrated as a mode of the antimicrobial action of the studied TiO2/Ag/Cu thin composite coatings. It is expected that they would ensure a broad spectrum bactericidal activity during the indwelling of the coated medical devices and for at least 12 h after that, with the supposition that the benefits will be over a longer time.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1376
Author(s):  
Alex Quok An Teo ◽  
Lina Yan ◽  
Akshay Chaudhari ◽  
Gavin Kane O’Neill

Additive manufacturing of stainless steel is becoming increasingly accessible, allowing for the customisation of structure and surface characteristics; there is little guidance for the post-processing of these metals. We carried out this study to ascertain the effects of various combinations of post-processing methods on the surface of an additively manufactured stainless steel 316L lattice. We also characterized the nature of residual surface particles found after these processes via energy-dispersive X-ray spectroscopy. Finally, we measured the surface roughness of the post-processing lattices via digital microscopy. The native lattices had a predictably high surface roughness from partially molten particles. Sandblasting effectively removed this but damaged the surface, introducing a peel-off layer, as well as leaving surface residue from the glass beads used. The addition of either abrasive polishing or electropolishing removed the peel-off layer but introduced other surface deficiencies making it more susceptible to corrosion. Finally, when electropolishing was performed after the above processes, there was a significant reduction in residual surface particles. The constitution of the particulate debris as well as the lattice surface roughness following each post-processing method varied, with potential implications for clinical use. The work provides a good base for future development of post-processing methods for additively manufactured stainless steel.


2007 ◽  
Vol 361-363 ◽  
pp. 733-736 ◽  
Author(s):  
D. Ionita ◽  
E. Aldea ◽  
G. Stanciu ◽  
Ioana Demetrescu

The aim of this paper was to find and establish the contact: biomaterial implant (TiAlZr) - coated with biologically active molecules; and the correlation between surface characteristics and their efficiency.


1984 ◽  
Vol 43 ◽  
Author(s):  
R. I. A. Malek ◽  
D. M. Roy

AbstractThe zeta-potentials of two fly ashes were studied (high-calcium and low-calcium). It was found that they possess a point of charge reversal at pH = 10.5 to 12. The point of zero charge (low-calcium fly ash) was found to be at pH = 5. Furthermore, it shifted to more acidic values after the fly ash is aged in several calcium-containing solutions. The surficial changes that could happen when mixing fly ashes with cement and concrete were further evaluated by aging fly ashes in different solutions: Ca(OH)2, CaSO4·2H2O, NaOH and water solutions. Information from analyses for different ionic species in the solutions and characterization of the solid residues (XRD and SEM) was used in tentative explanations for the different behavior of the two types of fly ash in cementitious mixtures and concrete.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2868
Author(s):  
Akshay S. Kulkarni ◽  
Ashok M. Sajjan ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
Sarfaraz Kamangar ◽  
...  

Natural polymers have attracted a lot of interest in researchers of late as they are environmentally friendly, biocompatible, and possess excellent characters. Membranes forming natural polymers have provided a whole new dimension to the separation technology. In this work, chitosan-gelatin blend membranes were fabricated using chitosan as the base and varying the amount of gelatin. Transport, mechanical, and surface characteristics of the fabricated membranes were examined in detail by means of the characterizing techniques such as Fourier transform infrared spectroscopy, differential scanning colorimetry, wide angle X-ray diffraction, scanning electron microscope, and thermogravimetric analysis. In order to analyze the water affinity of the developed blend chitosan-gelatin membranes, the percentage degree of swelling was examined. Out of the fabricated membranes, the membrane loaded with 15 mass% of gelatin exhibited the better pervaporation performance with a pervaporation separation index value of 266 at 30 °C for the solution containing 10% in terms of the mass of water, which is the highest among the contemporary membranes. All the fabricated membranes were stable during the pervaporation experiments, and permeation flux of water for the fabricated membranes was dominant in the overall total permeation flux, signifying that the developed membranes could be chosen for efficient separation of water–isopropanol mixture on a larger scale.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Dora Foti ◽  
Michela Lerna ◽  
Vitantonio Vacca

Masonry is a composite material largely used in construction. It exhibits several advantages, including significant compressive strength, thermal inertia, and aesthetic beauty. A disadvantage of masonry is mainly related to the inadequate shear strength due to the poor capacity and ductility of the adopted mortar. This aspect is crucial in seismic areas. In this paper, the behavior of polyurethane foams, used as adhesives for the construction of thin joints brick masonry walls, has been investigated. First, the characterization of components was carried out, followed by laboratory uniaxial tests on masonry walls and shear tests on triplets. Moreover, a comparison of the behavior of the foam-brick walls with respect to the traditional mortars masonry was carried out, as the type of joints varies and the arrangement of the holes of the bricks varies with respect to the direction of the applied load. Results provide indications on which adhesive has to be adopted for masonry buildings in reference to the site of construction (i.e., seismic hazard).


Author(s):  
Sushobhan Sen ◽  
Jeffery Roesler

Rigid pavements have an impact on the urban heat island (UHI) and hence the surrounding environment and human comfort. Currently, most studies use a mesoscale approach in UHI characterization of pavements. This study proposes a microscale approach that can be incorporated into a pavement life-cycle assessment (LCA). The heat flux of various concrete pavements containing layers of varying thermal diffusivity and inertia was simulated. The surface pavement radiative forcing (RFp) was developed as a metric for use in a pavement LCA. Additionally, the heat conducted and stored in each concrete pavement system was analyzed using an average seasonal day metric to understand the temporal pavement energetics. Of the various thermal cases, only a higher albedo surface significantly changed the RFp for a fixed climate. However, a time lag was induced by the thermal inertia of the base course, which decreased the amount of heat conducted out of the pavement at night by storing heat in the base course for a longer time, effectively reducing nighttime UHI. Diurnal variations in thermal behavior can be controlled by changing the thermal properties of subsurface layers, which can be used to partially mitigate UHI.


2020 ◽  
Vol 172 ◽  
pp. 14008
Author(s):  
Adrien François ◽  
Laurent Ibos ◽  
Vincent Feuillet ◽  
Johann Meulemans

The thermal resistance of a wall can be readily measured in steady-state. However, such a state is seldomly achieved in a building because of the variation of outdoor conditions as well as the high thermal inertia of building materials. This paper introduces a novel active (dynamic) method to measure the thermal resistance of a building wall. Not only are active approaches less sensitive to external temperature variations, they also enable to perform measurements within only a few hours. In the proposed methodology, an artificial thermal load is applied to a wall (heating of the indoor air) and its thermal response is monitored. Inverse techniques are used with a reduced model to estimate the value of the thermal resistance of a wall from the measured temperatures and heat fluxes. The methodology was validated on a known load-bearing wall built inside a climate chamber. The results were in good agreement with reference values derived from a steady-state characterization of the wall. The method also demonstrated a good reproducibility.


2016 ◽  
Vol 78 ◽  
pp. 58-64 ◽  
Author(s):  
Sook Sam Leong ◽  
Anushya Vijayananthan ◽  
Nur Adura Yaakup ◽  
Nazri Shah ◽  
Kwan Hoong Ng ◽  
...  

2007 ◽  
Vol 29-30 ◽  
pp. 67-70
Author(s):  
Wei Zhang ◽  
Jim Metson ◽  
C.L. Nguyen ◽  
S. Chen

The surface characteristics of an extruded 6060 aluminium alloy were investigated with X-ray Photoelectron Spectroscopy (XPS). The results revealed that the extruded surface was covered by oxides of aluminium and magnesium. The thickness of aluminium oxide was found to change along the extrusion direction with the thinnest and thickest oxide at the beginning and end of the extrudate, respectively. Magnesium segregation was found on the surface of the extrusion with the highest and lowest Mg concentration at the beginning and end of the extrudate, respectively. This is the inverse result of that expected where increasing Mg content was believed to be associated with film instability and thicker films.


Sign in / Sign up

Export Citation Format

Share Document