Protective effect of berberine on serum glucose levels in non-obese diabetic mice

2012 ◽  
Vol 12 (3) ◽  
pp. 534-538 ◽  
Author(s):  
Wei-Han Chueh ◽  
Jin-Yuarn Lin
PEDIATRICS ◽  
1974 ◽  
Vol 54 (4) ◽  
pp. 516-517
Author(s):  
Michael Klein ◽  
Arthur Kopelman ◽  
Ruth Lawrence

Dweck and Cassady1 have done an excellent job of bringing to our attention the frequent occurrence of hyperglycemia in very small premature infants. They implicate as the major cause of this phenomenon glucose infusion rates of >0.4 gm/kg/hr. Based on the association between the highest glucose and osmolality values in their series and intraventricular hemorrhage, they imply causality. The authors suggest further that oral glucose feeding confers a protective effect against hyperglycemia. The premature infants in the authors group 3, those with serum glucose levels of 300 mg/100 ml, have the lowest birth weights.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Takako Yokozawa ◽  
Eun Ju Cho ◽  
Chan Hum Park ◽  
Ji Hyun Kim

We investigated the antidiabetic potential of proanthocyanidin and its oligomeric form in STZ-induced diabetic model rats anddb/dbtype 2 diabetic mice. Proanthocyanidin ameliorated the diabetic condition by significant decreases of serum glucose, glycosylated protein, and serum urea nitrogen as well as decreases of urinary protein and renal-AGE in STZ-induced diabetic rats and decrease of serum glucose as well as significant decrease of glycosylated protein indb/dbtype 2 diabetic mice. The suppression of ROS generation and elevation of the GSH/GSSG ratio were also observed in the groups administered proanthocyanidin. Moreover, proanthocyanidin, especially its oligomeric form, affected the inflammatory process with the regulation of related protein expression, iNOS, COX-2 and upstream regulators, NF-κB, and the IκB-α. In addition, it had a marked effect on hyperlipidemia through lowering significant levels of triglycerides, total cholesterol, and NEFA. Moreover, expressions in the liver of SREBP-1 and SREBP-2 were downregulated by the administration of proanthocyanidins. The protective effect against hyperglycemia and hyperlipidemia in type 1 and 2 diabetic models was significantly strong in the groups administered the oligomeric rather than polymeric form. This suggests that oligomers act as a regulator in inflammatory reactions caused by oxidative stress in diabetes.


2013 ◽  
Vol 7 (2) ◽  
pp. 63-69
Author(s):  
Sally Badawi ◽  
Saleh Ahmed ◽  
Nabeel Al -Ani

This study was designed to test the lipid-lowering and antidiabetic activities of olive leaf and its callus extract. Diabetes in mice was induced by intraperitoneal injections of alloxan. The serum glucose and serum lipid were examined. Diabetic mice showed hypeglycemia, hypelipidemia. The administration, for 2 weeks of olive leaf and its callus extracts significantly decreased the Total cholesterol (TC). Triglycerides (TG). Low density lipoprotein (LDL), very low density lipoprotein (VLDL). Both types of olive extracts had significant hypoglycemic effects on blood glucose levels in diabetic mice. This hypoglycemic effect was as potent as the hypoglycemic effect of insulin. However, the callus extract was more potent than the leaves extracts and most potent than insulin in causing a significant decrease in LDL, VLDL, TC, TG and in antidiabetic effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Amanda Alves da Rocha ◽  
Tiago Ferreira da Silva Araújo ◽  
Caíque Silveira Martins da Fonseca ◽  
Diógenes Luís da Mota ◽  
Paloma Lys de Medeiros ◽  
...  

Crataeva tapiais a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whetherCrataeva tapiabark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jan Pennig ◽  
Philipp Scherrer ◽  
Mark Colin Gissler ◽  
Nathaly Anto-Michel ◽  
Natalie Hoppe ◽  
...  

AbstractDiabetes worsens atherosclerosis progression and leads to a defect in repair of arteries after cholesterol reduction, a process termed regression. Empagliflozin reduces blood glucose levels via inhibition of the sodium glucose cotransporter 2 (SGLT-2) in the kidney and has been shown to lead to a marked reduction in cardiovascular events in humans. To determine whether glucose lowering by empagliflozin accelerates atherosclerosis regression in a mouse model, male C57BL/6J mice were treated intraperitoneally with LDLR- and SRB1- antisense oligonucleotides and fed a high cholesterol diet for 16 weeks to induce severe hypercholesterolemia and atherosclerosis progression. At week 14 all mice were rendered diabetic by streptozotocin (STZ) injections. At week 16 a baseline group was sacrificed and displayed substantial atherosclerosis of the aortic root. In the remaining mice, plasma cholesterol was lowered by switching to chow diet and treatment with LDLR sense oligonucleotides to induce atherosclerosis regression. These mice then received either empagliflozin or vehicle for three weeks. Atherosclerotic plaques in the empagliflozin treated mice were significantly smaller, showed decreased lipid and CD68+ macrophage content, as well as greater collagen content. Proliferation of plaque resident macrophages and leukocyte adhesion to the vascular wall were significantly decreased in empagliflozin-treated mice. In summary, plasma glucose lowering by empagliflozin improves plaque regression in diabetic mice.


2003 ◽  
Vol 69 (7) ◽  
pp. 4123-4128 ◽  
Author(s):  
R. T. Bacon ◽  
J. R. Ransom ◽  
J. N. Sofos ◽  
P. A. Kendall ◽  
K. E. Belk ◽  
...  

ABSTRACT The heat resistance of susceptible and multiantimicrobial-resistant Salmonella strains grown to stationary phase in glucose-free tryptic soy broth supplemented with 0.6% yeast extract (TSBYE−G; nonadapted), in regular (0.25% glucose) TSBYE, or in TSBYE−G with 1.00% added glucose (TSBYE+G; acid adapted) was determined at 55, 57, 59, and 61°C. Cultures were heated in sterile 0.1% buffered peptone water (50 μl) in heat-sealed capillary tubes immersed in a thermostatically controlled circulating-water bath. Decimal reduction times (D values) were calculated from survival curves having r 2 values of >0.90 as a means of comparing thermal tolerance among variables. D 59°C values increased (P < 0.05) from 0.50 to 0.58 to 0.66 min for TSBYE−G, TSBYE, and TSBYE+G cultures, respectively. D 61°C values of antimicrobial-susceptible Salmonella strains increased (P < 0.05) from 0.14 to 0.19 as the glucose concentration increased from 0.00 to 1.00%, respectively, while D 61°C values of multiantimicrobial-resistant Salmonella strains did not differ (P > 0.05) between TSBYE−G and TSBYE+G cultures. When averaged across glucose levels and temperatures, there were no differences (P > 0.05) between the D values of susceptible and multiantimicrobial-resistant inocula. Collectively, D values ranged from 4.23 to 5.39, 1.47 to 1.81, 0.50 to 0.66, and 0.16 to 0.20 min for Salmonella strains inactivated at 55, 57, 59, and 61°C, respectively. zD values were 1.20, 1.48, and 1.49°C for Salmonella strains grown in TSBYE+G, TSBYE, and TSBYE−G, respectively, while the corresponding activation energies of inactivation were 497, 493, and 494 kJ/mol. Study results suggested a cross-protective effect of acid adaptation on thermal inactivation but no association between antimicrobial susceptibility and the ability of salmonellae to survive heat stress.


2014 ◽  
Vol 79 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Fuminori Kawabata ◽  
Takafumi Mizushige ◽  
Keisuke Uozumi ◽  
Kohsuke Hayamizu ◽  
Li Han ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 9147
Author(s):  
Imane Es-Safi ◽  
Hamza Mechchate ◽  
Amal Amaghnouje ◽  
Anna Calarco ◽  
Smahane Boukhira ◽  
...  

The seeds of Ammodaucus leucotrichus Cosson and Durieu have been used in the North African Sahara as a traditional medicine to treat diabetes. The present study investigates the antidiabetic, antihyperglycemic, and anti-inflammatory properties of the defatted hydroethanolic extract of Ammodaucus leucotrichus (DHEAM). The antidiabetic and the antihyperglycemic studies were assessed on alloxan-induced diabetic with orally administered doses of DHEAM (100 and 200 mg/kg). At the same time, its anti-inflammatory propriety was evaluated by measuring edema development in the Wistar rats paw induced with carrageenan. Treatment of diabetic mice with DHEAM for four weeks managed their high fasting blood glucose levels, improved their overall health, and also revealed an excellent antihyperglycemic activity. Following the anti-inflammatory results, DHEAM exhibited a perfect activity. HPLC results revealed the presence of seven molecules (chlorogenic acid, 3-p-coumaroylquinic acid, gallic acid, ferulic acid, myricetin, quercetin, luteolin). This work indicates that the DHEAM has an important antidiabetic, antihyperglycemic, and anti-inflammatory effect that can be well established as a phytomedicine to treat diabetes.


Sign in / Sign up

Export Citation Format

Share Document