Creating high-performance bi-functional composite coatings on magnesium−8lithium alloy through electrochemical surface engineering with highly enhanced corrosion and wear protection

2020 ◽  
Vol 818 ◽  
pp. 153341
Author(s):  
Zhijun Li ◽  
Xuexia Wang ◽  
Xiuli Dong ◽  
Fenglian Hu ◽  
Shuyi Liu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5903
Author(s):  
Michał Tacikowski ◽  
Janusz Kamiński ◽  
Krzysztof Rożniatowski ◽  
Marcin Pisarek ◽  
Rafał Jakieła ◽  
...  

Coating magnesium alloys with nitride surface layers is a prospective way of improving their intrinsically poor surface properties; in particular, their tribological and corrosion resistance. These layers are usually produced using PVD methods using magnetron sputtering or arc evaporation. Even though the thus-produced layers significantly increase the wear resistance of the alloys, their effects on corrosion resistance are unsatisfactory because of the poor tightness, characteristic of PVD-produced products. Tightness acquires crucial significance when the substrate is a highly-active magnesium alloy, hence our idea to tighten the layers by subjecting them to a post-deposition chemical-hydrothermal-type treatment. This paper presents the results of our experiments with a new hybrid surface engineering method, using a final tightening pressure hydrothermal gas treatment in overheated steam of the composite titanium nitride layers PVD, produced on AZ91D magnesium alloy. The proposed method resulted in an outstanding improvement of the performance properties, in particular resistance to corrosion and wear, yielding values that exceed those exhibited by commercially anodized alloys and austenitic stainless 316L steel. The developed hybrid method produces new, high-performance corrosion and wear resistant, lightweight magnesium base materials, suitable for heavy duty applications.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 670
Author(s):  
Gifty Oppong Boakye ◽  
Arna María Ormsdóttir ◽  
Baldur Geir Gunnarsson ◽  
Sandeep Irukuvarghula ◽  
Raja Khan ◽  
...  

The selection of electroless nickel-phosphorus plating (ENP) has been inclined towards their properties and advantages with complex geometry applications. These properties include coating uniformity, low surface roughness, low wettability, high hardness, lubricity, and corrosion- and wear-resistance. Materials used in geothermal environments are exposed to harsh conditions such as high loads, temperature, and corrosive fluids, causing corrosion, scaling, erosion and wear of components. To improve the corrosion- and wear-resistance and anti-scaling properties of materials for geothermal environment, a ENP duplex coating with PTFE nanoparticles was developed and deposited on mild steel within the H2020 EU Geo-Coat project. ENP thin adhesive layer and ENP+PTFE top functional layer form the duplex structure of the coating. The objective of this study was to test the mechanical and tribological properties of the developed ENP-PTFE coatings with varying PTFE content. The microstructural, mechanical and tribological properties of the as-deposited coating with increasing PTFE content in the top functional layer in the order: ENP1, ENP2 and ENP3 were evaluated. The results showed maximum wear protection of the substrates at the lowest load; however, increasing load and sliding cycles increased the wear rates, and 79% increased lubrication was recorded for the ENP2 duplex coating. The wear performance of ENP3 greatly improved with a wear resistance of 8.3 × 104 m/mm3 compared to 6.9 × 104 m/mm3 for ENP2 and 2.1 × 104 m/mm3 for ENP1. The results are applicable in developing low friction, hydrophobic or wear-resistive surfaces for geothermal application.


2008 ◽  
Vol 595-598 ◽  
pp. 583-591 ◽  
Author(s):  
Céline Bondoux ◽  
Christophe Degrandcourt ◽  
George Ailinca ◽  
Pierre D'Ans ◽  
Marc Degrez ◽  
...  

For the first time, a unique expert system able to give assistance to designers in surface engineering has been built. Not only is this software able to provide multi-layer coating solutions, but it is also able to rank different solutions according to their technico-economical interest. In addition to its ability to solve corrosion and wear concerns, it is also able to deal with surface finishing properties (like brightness, weldability, electrical conductivity, biocompatibility, …). This paper describes the structure of this expert system together with its main operation principles and future developments.


2017 ◽  
Vol 5 (4) ◽  
pp. 1724-1733 ◽  
Author(s):  
Weiran Zhou ◽  
Jieming Zhen ◽  
Qing Liu ◽  
Zhimin Fang ◽  
Dan Li ◽  
...  

A new successive surface engineering method via a dual modification of TiO2 compact layer by PC61BM and C60-ETA was developed, affording dramatic efficiency enhancement with suppressed-hysteresis current–voltage response.


2021 ◽  
pp. 2109319
Author(s):  
Haocheng Ji ◽  
Jingjun Zhai ◽  
Guojie Chen ◽  
Xiao Qiu ◽  
Hui Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document