Quality of meat obtained by the halal slaughter method

2018 ◽  
Vol 280 ◽  
pp. S71-S72
Author(s):  
Srouji Imad ◽  
Savu Constantin
Keyword(s):  
Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1381
Author(s):  
Jagoda Żurek ◽  
Mariusz Rudy ◽  
Magdalena Kachel ◽  
Stanisław Rudy

Social pressure on increased protection and welfare of animals results mainly from the initiative of people living in the urbanized parts of the world. The respect for the right to freedom of religion, which is indisputably one of the fundamental liberal rights, must be taken into account. The right to freedom to religion also includes the right to follow a religion’s dietary recommendations. The aim of the literature analysis was to systematize the knowledge on the ethical aspects and quality of meat obtained from carcasses of animals subjected to conventional and ritual slaughter. Consistent with the importance of ritual slaughter for humans of two major faiths (Islam and Judaism), it is important that scientists be objective when evaluating these practices from an animal welfare and meat quality point of view. To evaluate the welfare of the slaughtered animal, it is necessary to openly discuss ritual slaughter and the improvement of its methods. The quality of meat and the degree of bleeding of animals do not always correlate with the ritual slaughter method used.


2018 ◽  
Vol 98 (3) ◽  
pp. 405-415 ◽  
Author(s):  
Marta Bykowska

Fallow deer meat (venison) is a new product acquired from farm-raised and wild animals. Nowadays, people are more concerned about their health, and therefore, they search for high quality, “healthy” products. Farming of fallow deer is ecological and friendly to the environment. Animals are kept in pasture conditions which resemble their natural environment. Venison is considered healthy meat, low in fat and cholesterol, and high in protein. The aim of this review was to gather and discuss the available literature on factors influencing the quality of venison such as sex, age, slaughter method and housing system, feeding, hanging method, animal condition, muscle type, and ageing of meat, considering both farm-raised and wild fallow deer.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Sign in / Sign up

Export Citation Format

Share Document