Suppresive plants as weed management tool: Managing Parthenium hysterophorus under simulated grazing in Australian grasslands

2019 ◽  
Vol 247 ◽  
pp. 224-233 ◽  
Author(s):  
N. Khan ◽  
D. George ◽  
A. Shabbir ◽  
S.W. Adkins
2006 ◽  
Vol 20 (3) ◽  
pp. 646-650 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan

Weed management is often difficult and expensive in organic production systems. Clove oil is an essential oil that functions as a contact herbicide and may provide an additional weed management tool for use on organic farms. Burning nettle, purslane, and rye responses to 5, 10, 20, 40, and 80% v/v clove oil mixture applied in spray volumes of 281 and 468 L/ha were examined. Log-logistic curves were fitted to the nettle and purslane data to determine the herbicide dose required to reduce plant dry weight 50% (GR50) and 90% (GR90). A three-parameter Gaussian curve was fitted to the rye data. The GR50 and GR90 were largely unaffected by spray volume. Nettle dry weight was reduced by 90% with 12 to 61 L clove oil/ha, whereas 21 to 38 L clove oil/ha were required to reduce purslane biomass to the same level. Rye was not effectively controlled by clove oil. Clove oil controls broadleaf weeds at high concentrations, but its cost makes broadcast applications prohibitive, even in high-value vegetable production systems.


1988 ◽  
Vol 2 (2) ◽  
pp. 196-197
Author(s):  
Celestine A. Lacey ◽  
Charles Egan ◽  
Wayne Pearson ◽  
Peter K. Fay

Residents in Stillwater County, MT, used a weed bounty program as an educational tool to promote awareness, detection, and control of spotted knapweed (Centaurea maculosaLam. # CENMA) on range and noncropland. Many people became involved with the weed control effort, weed awareness was increased, spotted knapweed was controlled, and the program was cost effective. The success of a weed bounty program is influenced by 1) the enthusiasm and innovations of the county extension agent, weed supervisor, or other key individual or group in the community; 2) the choice of the weeds selected; and 3) good media coverage of the bounty program. With proper planning and organization, weed bounty programs effectively promote awareness and action in other areas of public concern.


2005 ◽  
Vol 77 (1) ◽  
pp. 41-56 ◽  
Author(s):  
S.M. Boyetchko

While weed populations have traditionally been controlled by chemical and cultural methods, inundative biological control with microbial agents offers an additional strategy for managing weeds. Foliar pathogens have long been sought after as potential biocontrol agents, but rhizosphere microorganisms and their influence on weed growth and development have been ignored until recently. Rhizosphere soil is replete with a variety of microorganisms such as rhizobacteria, pathogenic soil-borne fungi, and arbuscular mycorrhizal fungi, all of which have a direct or indirect impact on weeds and their competitive ability. In some cases, specific microbes have a detrimental effect on the weeds and can be exploited as biological control agents. The ubiquitous mycorrhizal fungi are beneficial symbionts that can impart a competitive ad vantage to their plant hosts, particularly if mycorrhizal dependency is exhibited in weeds as opposed to crops. It may be possible to exploit various soil microbes by directly or indirectly reducing weed competition and tipping the competitive advantage in favor of the crop. However, information available on microbial/weed/crop relationships is limited and research efforts are required to explore the use of soil microorganisms as another weed management tool.


2015 ◽  
Vol 18 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Toshiko Yudate ◽  
Satoshi Nakamura ◽  
...  

2015 ◽  
Vol 33 ◽  
pp. 73-81 ◽  
Author(s):  
Ujjal Kumar Pati ◽  
Ashim Chowdhury

There is a worldwide search for the safe, effective and eco-friendly compounds of plant origin to combat the weed species and other pests which are responsible for the great impact on the growth and productivity of agricultural crops. In this present study, a comparison was made to evaluate the phytotoxicity potential of sequentially extracted solvent (hexane, ethyl-acetate, methanol) extracts of Parthenium hysterophorus L. (aerial parts) in vitro through bench-top seed germination assay (Vigna radiata L.). One-way analysis of variance (ANOVA) followed by Duncan’s multiple range test (DMRT) were done for statistical analysis of the data. The study reveals that germination, growth and vigour was significantly (P<0.05) reduced by ethyl-acetate and methanol extracts. The present study concluded that phytotoxicity of ethylacetate and methanolic crude extracts of Parthenium hysterophorus could be exploited as potential bioherbicide for future weed management programme and the development of bioherbicide for commercial use.


2019 ◽  
Vol 29 (6) ◽  
pp. 866-873
Author(s):  
S. Christopher Marble ◽  
Shawn T. Steed ◽  
Debalina Saha ◽  
Yuvraj Khamare

Mulches have been evaluated extensively as a weed management tool in container plant production, but most research has focused on loose-fill wood-derived mulch materials, such as pine bark or wood chips. In this experiment, pine (mixed Pinus sp.) bark (PB), shredded hardwood (HW), and pine sawdust were evaluated for weed control and crop response both alone and in combination with a guar gum tackifier alongside a plastic film mulch, a paper slurry mulch, and the paper slurry mulch + PB and compared with a nonmulched, nontreated control and a single application of preemergence herbicide (oxyfluorfen + pendimethalin). Mulch materials were applied to nursery containers ranging from 7 to 25 gal at two different nurseries and at two research centers in central Florida in 2017 and 2018. Results showed that the plastic mulch provided more than a 90% reduction in hand weeding time and weed weight over a 6-month period, and similar control was achieved with PB, paper slurry + PB, and the HW treatment (64% to 91% reduction in weeding time and weed weight). No growth differences were observed with any mulch treatment in any species evaluated including ligustrum (Ligustrum japonicum), Chinese elm (Ulmus parvifolia), or podocarpus (Podocarpus macrophyllum).


2009 ◽  
Vol 27 (2) ◽  
pp. 407-419 ◽  
Author(s):  
A. Merotto Jr. ◽  
A.J. Fischer ◽  
R.A. Vidal

The current knowledge of light quality effects on plant morphogenesis and development represents a new era of understanding on how plant communities perceive and adjust to available resources. The most important consequences of light quality cues, often mediated by decreasing in red far-red ratios with respect to the spectral composition of incident sunlight radiation, affecting weed-crop interaction are the increased plant height and shoot to root ratio in anticipation of competition by light quantity, water or nutrients. Although the concepts related to light quality have been extensively studied and several basic process of this phenomenon are well known, little applications of photomorphogenic signaling currently are related to agricultural problems or weed management. The objectives of this review are to describe how light quality change can be a triggering factor of interspecific interference responses, to analyze how this phenomenon can be used to predict weed interference, to reevaluate the critical periods of interference concept, and to discuss its potential contribution towards developing more weed competitive crop varieties. Knowledge on light quality responses involved in plant sensing of interspecific competition could be used to identify red/far-red threshold values, indicating when weed control should be started. Light quality alterations by weeds can affect grain crop development mainly in high yielding fields. Unlike the traditional concept or the critical period of competition, light quality mediated interference implies that the critical period for weed control could start before the effects of direct resource (water, nutrients and available light) limitation actually occur. The variability in light quality responses among crop genotypes and the identification of mutants insensitive to light quality effects indicate that this characteristic can be selected or modified to develop cultivars with enhanced interspecific interference ability. Knowledge on light quality-elicited responses represents a new possibility to understand the underlying biology of interspecific interference, and could be used in the development of new weed management technologies.


Sign in / Sign up

Export Citation Format

Share Document