scholarly journals Consumption of avenanthramides extracted from oats reduces weight gain, oxidative stress, inflammation and regulates intestinal microflora in high fat diet-induced mice

2020 ◽  
Vol 65 ◽  
pp. 103774
Author(s):  
Ying Zhang ◽  
Tianhong Ni ◽  
Dianwei Zhang ◽  
Huilin Liu ◽  
Jing Wang ◽  
...  
Beverages ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 78 ◽  
Author(s):  
Luciana Gonçalves ◽  
Gabrielli Bortolato ◽  
Ruben Dario Braccini Neto ◽  
Marina Rocha Frusciante ◽  
Claudia Funchal ◽  
...  

The aim of this study was to evaluate the effects of high fat diet with or without grape juice during the pregnancy on gestational weight gain, biochemical parameters, and oxidative stress in plasma and liver from Wistar rats. Forty-nine rats were divided into four groups: control diet group (CD), high fat diet (HFD), grape juice and control diet (PGJCD), and grape juice and high fat diet (PGJHFD). During the treatment the weight gain of the rats was tracked. They had free access to their respective diets during 42 days of treatment. After offspring weaning, the mother rats were euthanized and blood and liver were collected. The high fat diet increased the total cholesterol and triglycerides serum levels as well as carbonyl levels in the liver, however this diet reduced the high-density lipoprotein (HDL) and urea levels in serum. Grape juice consumption reduced gestational body weight gain. In liver, the juice consumption increased sulfhydryl levels and reduced the superoxide dismutase (SOD) activity and TBARS level, in serum the consumption reduced aspartate aminotransferase (AST) and TBARS. We can conclude that the consumption of a diet rich in fat can promotes harmful effects on health during pregnancy, however the consumption of grape juice seems to be an important alternative to prevent oxidative damages and to promote the improvement of health.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 767 ◽  
Author(s):  
Kristen E. Boyle ◽  
Margaret J. Magill-Collins ◽  
Sean A. Newsom ◽  
Rachel C. Janssen ◽  
Jacob E. Friedman

Overweight and obesity accompanies up to 70% of pregnancies and is a strong risk factor for offspring metabolic disease. Maternal obesity-associated inflammation and lipid profile are hypothesized as important contributors to excess offspring liver and skeletal muscle lipid deposition and oxidative stress. Here, we tested whether dams expressing the fat-1 transgene, which endogenously converts omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid, could protect wild-type (WT) offspring against high-fat diet induced weight gain, oxidative stress, and disrupted mitochondrial fatty acid oxidation. Despite similar body mass at weaning, offspring from fat-1 high-fat-fed dams gained less weight compared with offspring from WT high-fat-fed dams. In particular, WT males from fat-1 high-fat-fed dams were protected from post-weaning high-fat diet induced weight gain, reduced fatty acid oxidation, or excess oxidative stress compared with offspring of WT high-fat-fed dams. Adult offspring of WT high-fat-fed dams exhibited greater skeletal muscle triglycerides and reduced skeletal muscle antioxidant defense and redox balance compared with offspring of WT dams on control diet. Fat-1 offspring were protected from the reduced fatty acid oxidation and excess oxidative stress observed in offspring of WT high-fat-fed dams. These results indicate that a maternal fat-1 transgene has protective effects against offspring liver and skeletal muscle lipotoxicity resulting from a maternal high-fat diet, particularly in males. Altering maternal fatty acid composition, without changing maternal dietary composition or weight gain with high-fat feeding, may highlight important strategies for n-3-based prevention of developmental programming of obesity and its complications.


2020 ◽  
Vol 394 (1) ◽  
pp. 33-47
Author(s):  
Fariha Kabir ◽  
Kamrun Nahar ◽  
Md. Mizanur Rahman ◽  
Fariha Mamun ◽  
Shoumen Lasker ◽  
...  

2021 ◽  
Author(s):  
Jingda Li ◽  
Tianqi Wang ◽  
Panpan Liu ◽  
Fuyuan Yang ◽  
Xudong Wang ◽  
...  

Hesperetin as a major bioflavonoid in citrus fruits improves NAFLD by suppressing hepatic oxidative stress and inflammation.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


Sign in / Sign up

Export Citation Format

Share Document