Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale

2010 ◽  
Vol 98 (1) ◽  
pp. 120-125 ◽  
Author(s):  
E. Puértolas ◽  
N. López ◽  
G. Saldaña ◽  
I. Álvarez ◽  
J. Raso
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 542 ◽  
Author(s):  
Marcos Andrés Maza ◽  
Juan Manuel Martínez ◽  
Guillermo Cebrián ◽  
Ana Cristina Sánchez-Gimeno ◽  
Alejandra Camargo ◽  
...  

The evolution of polyphenolic compounds and sensory properties of wines obtained from Grenache grapes, either untreated or treated with pulsed electric fields (PEF), in the course of bottle aging, as well as during oak aging followed by bottle aging, were compared. Immediately prior to aging in bottles or in barrels, enological parameters that depend on phenolic extraction during skin maceration were higher when grapes had been treated with PEF. In terms of color intensity, phenolic families, and individual phenols, the wine obtained with grapes treated by PEF followed an evolution similar to untreated control wine in the course of aging. Sensory analysis revealed that the application of a PEF treatment resulted in wines that are sensorially different: panelists preferred wines obtained from grapes treated with PEF. Physicochemical and sensory analyses showed that grapes treated with PEF are suitable for obtaining wines that require aging in bottles or in oak barrels.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leire Astráin-Redín ◽  
Javier Raso ◽  
Guillermo Cebrián ◽  
Ignacio Álvarez

Abstract The aim of this investigation was to lay the groundwork of the potential application of Pulsed Electric Fields (PEF) technology for accelerating the drying process of meat and meat products, and specifically in this work of Spanish dry-cured sausages “longaniza”. PEF treatments were applied to pork loin samples, and the influence of different PEF parameters on the process were evaluated. An optimal PEF treatment of 1 kV/cm, 200 μs of pulse width and 28 kJ/kg was determined as the most suitable to electroporate meat cells and to improve water transfer by achieving a water content reduction of 60.4% in treated-meat samples dried at 4 °C. The influence of PEF on meat drying rate was also studied on minced pork and the results showed that with a particle size of 4.0 mm higher drying rates were achieved. To validate the results, Spanish cured sausages were prepared from treated and untreated minced pork and stuffed into gauzes and natural pork casings at pilot plant scale. After the curing process, the application of PEF to sausages stuffed into gauze reduced the drying time from 17 to 9–10 days, a reduction of 41–47%, confirming the effects described at lab scale and the potential of PEF for accelerating the sausage-drying process.


1984 ◽  
Vol 3 (1) ◽  
pp. 329-346
Author(s):  
E. R. Strope ◽  
E. Findl ◽  
J. C. Conti ◽  
V. Acuff

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


2021 ◽  
Vol 22 (13) ◽  
pp. 7051
Author(s):  
Vitalii Kim ◽  
Emily Gudvangen ◽  
Oleg Kondratiev ◽  
Luis Redondo ◽  
Shu Xiao ◽  
...  

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.


2020 ◽  
Vol 77 ◽  
pp. 103232
Author(s):  
Hassan Pahlavanzadeh ◽  
Sima Hejazi ◽  
Mehrdad Manteghian

Sign in / Sign up

Export Citation Format

Share Document