A composite drought index developed for detecting large-scale drought characteristics

2021 ◽  
pp. 127308
Author(s):  
Muhammad Abrar Faiz ◽  
Yongqiang Zhang ◽  
Xuanze Zhang ◽  
Ning Ma ◽  
Santosh K. Aryal ◽  
...  
2012 ◽  
Vol 9 (7) ◽  
pp. 8375-8424 ◽  
Author(s):  
A. F. Van Loon ◽  
M. H. J. Van Huijgevoort ◽  
H. A. J. Van Lanen

Abstract. Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is: how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that were part of the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought). Drought characteristics simulated by large-scale models clearly reflected drought propagation, i.e. drought events became less and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having less and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an underestimation of wet-to-dry-season droughts and snow-related droughts. Furthermore, almost no composite droughts were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. We conclude that drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe and that some challenges remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage (e.g. aquifers) in large-scale models, also parametrisation of storage processes requires attention, for example through a global scale dataset on aquifer characteristics.


2012 ◽  
Vol 16 (11) ◽  
pp. 4057-4078 ◽  
Author(s):  
A. F. Van Loon ◽  
M. H. J. Van Huijgevoort ◽  
H. A. J. Van Lanen

Abstract. Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought). Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an underestimation of wet-to-dry-season droughts and snow-related droughts. Furthermore, almost no composite droughts were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. We conclude that most drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe. Challenges, however, remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. This leads to a high uncertainty in hydrological drought simulation at large scales. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage in large-scale models, also parametrisation of storage processes requires attention, for example through a global-scale dataset on aquifer characteristics, improved large-scale datasets on other land characteristics (e.g. soils, land cover), and calibration/evaluation of the models against observations of storage (e.g. in snow, groundwater).


2020 ◽  
Vol 11 (S1) ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Xingye Zhu ◽  
Muhammad Arshad ◽  
Muhammad Zaman ◽  
Yasir Niaz ◽  
...  

Abstract Drought indices that compute drought events by their statistical properties are essential stratagems for the estimation of the impact of drought events on a region. This research presents a quantitative investigation of drought events by analyzing drought characteristics, considering agro-meteorological aspects in the Heilongjiang Province of China during 1980 to 2015. To examine these aspects, the Standardized Soil Moisture Index (SSI), Standardized Precipitation Index (SPI), and Multivariate Standardized Drought Index (MSDI) were used to evaluate the drought characteristics. The results showed that almost half of the extreme and exceptional drought events occurred during 1990–92 and 2004–05. The spatiotemporal analysis of drought characteristics assisted in the estimation of the annual drought frequency (ADF, 1.20–2.70), long-term mean drought duration (MDD, 5–11 months), mean drought severity (MDS, −0.9 to −2.9), and mild conditions of mean drought intensity (MDI, −0.2 to −0.80) over the study area. The results obtained by MSDI reveal the drought onset and termination based on the combination of SPI and SSI, with onset being dominated by SPI and drought persistence being more similar to SSI behavior. The results of this study provide valuable information and can prove to be a reference framework to guide agricultural production in the region.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 159 ◽  
Author(s):  
Chih-wen Hung ◽  
Ming-Fu Shih

Drought is one of the important issues in climate studies. A drought index, Taiwan Meteorological Drought index (TMD index), was previously proposed and is applied here to identify historical severe droughts in Taiwan in order to clarify the corresponding large-scale backgrounds as a potential alert to the society in future. Through the TMD index, several historical severe drought cases in Taiwan are detected and characterized by significant seasonal variability in the annual cycle. Composites for large-scale atmospheric and oceanic environments over different periods within the dry season are conducted. From October to December, the colder sea surface temperature (SST) pattern of Pacific Meridional Mode (PMM) and the PMM-induced local anomalous anticyclones over the South China Sea are both in charge of the extremely dry conditions in Taiwan. From January to February, cold SST in the South China Sea and its adjacent oceans dominates local atmospheric conditions above these regions and creates an unfavorable environment for convection systems. From March to May, a massive anomalous anticyclonic circulation centering beside Alaska and extending its properties to East Asia and Taiwan generates a descending environment and in turn suppresses convection systems to develop. Therefore, the extremely dry conditions under this system are expected.


Author(s):  
Debbie Hemming ◽  
Carlo Buontempo ◽  
Eleanor Burke ◽  
Mat Collins ◽  
Neil Kaye

The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961–1990 and 2021–2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between −5 and −25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.


2013 ◽  
Vol 17 (5) ◽  
pp. 1715-1732 ◽  
Author(s):  
H. A. J. Van Lanen ◽  
N. Wanders ◽  
L. M. Tallaksen ◽  
A. F. Van Loon

Abstract. Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems) to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001) of 1495 grid cells across the world were selected that represent Köppen–Geiger major climate types. These data were fed into a conceptual hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e., three soils with different soil moisture supply capacity and three groundwater systems (quickly, intermediately and slowly responding). Hydrological drought characteristics (number, duration and standardized deficit volume) were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates) had about twice as many drought events as the arid and polar types (B- and E-climates), and the durations of more extreme droughts were about half the length. Selected soils under permanent grassland were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of droughts for quickly responding groundwater systems was about three times higher than for slowly responding systems. Groundwater systems substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of Köppen–Geiger climate, soil and groundwater system showed that the responsiveness of the groundwater system is as important as climate for hydrological drought development. This urges for an improvement of subsurface modules in global hydrological models to be more useful for water resources assessments. A foreseen higher spatial resolution in large-scale models would enable a better hydrogeological parameterization and thus inclusion of lateral flow.


2019 ◽  
Vol 11 (5) ◽  
pp. 485 ◽  
Author(s):  
Fei Wang ◽  
Haibo Yang ◽  
Zongmin Wang ◽  
Zezhong Zhang ◽  
Zhenhong Li

The traditional station-based drought index is vulnerable because of the inadequate spatial distribution of the station, and also, it does not fully reflect large-scale, dynamic drought information. Thus, large-scale drought monitoring has been widely implemented by using remote sensing precipitation products. Compared with station data, remote sensing precipitation products have the advantages of wide coverage and dynamic, continuous data, which can effectively compensate for the deficiency in the spatial distribution of the ground stations and provide a new data source for the calculation of a drought index. In this study, the Gridded Standardized Precipitation Evapotranspiration Index (GSPEI) was proposed based on a remote sensing dataset produced by the Climate Prediction Center morphing technique (CMORPH), in order to evaluate the gridded drought characteristics in the Yellow River basin (YRB) from 1998 to 2016. The optimal Ordinary Kriging interpolation method was selected to interpolate meteorological station data to the same spatial resolution as CMORPH data (8 km), in order to compare the ground-based meteorological parameters to remote sensing-based data. Additionally, the gridded drought trends were identified based on the Modified Mann–Kendall (MMK) trend test method. The results indicated that: (1) the GSPEI was suitable for drought evaluation in the YRB using CMORPH precipitation data, which were consistent with ground-based meteorological data; (2) the positive correlation between GSPEI and SPEI was high, and all the correlation coefficients (CCs) passed the significance test of α = 0.05, which indicated that the GSPEI could better reflect the gridded drought characteristics of the YRB; (3) the drought severity in each season of the YRB was highest in summer, followed by spring, autumn, and winter, with an average GSPEI of −1.51, −0.09, 0.30, and 1.33, respectively; and (4) the drought showed an increasing trend on the monthly scale in March, May, August, and October, and a decreasing trend on the seasonal and annual scale.


2021 ◽  
Vol 13 (4) ◽  
pp. 2066
Author(s):  
Jin Hyuck Kim ◽  
Jang Hyun Sung ◽  
Eun-Sung Chung ◽  
Sang Ug Kim ◽  
Minwoo Son ◽  
...  

Due to the recent appearance of shares socioeconomic pathway (SSP) scenarios, there have been many studies that compare the results between Coupled Model Intercomparison Project (CMIP)5 and CMIP6 general circulation models (GCMs). This study attempted to project future drought characteristics in the Cheongmicheon watershed using SSP2-4.5 of Australian Community Climate and Earth System Simulator-coupled model (ACCESS-CM2) in addition to Representative Concentration Pathway (RCP) 4.5 of ACCESS 1-3 of the same institute. The historical precipitation and temperature data of ACCESS-CM2 were generated better than those of ACCESS 1-3. Two meteorological drought indices, namely, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were used to project meteorological drought while a hydrological drought index, Standardized Streamflow Index (SDI), was used to project the hydrological drought characteristics. The metrological data of GCMs were bias-corrected using quantile mapping method and the streamflow was obtained using Soil and Water Assessment Tool (SWAT) and bias-corrected meteorological data. As a result, there were large differences of drought occurrences and severities between RCP4.5 and SSP2-4.5 for the values of SPI, SPEI, and SDI. The differences in the minimum values of drought index between near (2021–2060) and far futures (2061–2100) were very small in SSP2-4.5, while those in RCP4.5 were very large. In addition, the longest drought period from SDI was the largest because the variation in precipitation usually affects the streamflow with a lag. Therefore, it was concluded that it is important to consider both CMIP5 and CMIP6 GCMs in establishing the drought countermeasures for the future period.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ileana Mares ◽  
Venera Dobrica ◽  
Constantin Mares ◽  
Crisan Demetrescu

AbstractThe present study aims to investigate the possible influence of solar/geomagnetic forcing on climate variables, such as the drought index, Danube discharge and large-scale atmospheric indices. Our analysis was performed separately for each season for two time periods, 1901–2000 and 1948–2000. The relationship between terrestrial variables and external indices was established based on the application of (1) information theory elements, namely, synergy, redundancy, total correlation, transfer entropy and (2) wavelet coherence analysis. Bandpass filtering has also been applied. The most significant signature of the solar/geomagnetic forcing in the climate variables was obtained for the data smoothed by the bandpass filter. According to our results, significant solar/geomagnetic forcing appears in the terrestrial variables with a delay of 2–3 years.


2021 ◽  
Author(s):  
Irfan Ullah ◽  
Xieyao Ma ◽  
Jun Yin ◽  
Farhan Saleem ◽  
Sidra Syed ◽  
...  

Abstract The long-term drought monitoring and its assessment are of great importance for meteorological disaster risk management. The recurrent spells of heatwaves and droughts have severely affected the environmental conditions worldwide, including Pakistan. The present work sought to investigate the spatiotemporal changes in drought characteristics over Pakistan during Rabi and Kharif cropping seasons. The role of large-scale circulation and interannual mode of climate variability is further explored to identify the physical mechanisms associated with droughts in the region. Monthly precipitation and temperature data (1983–2019) from 53 meteorological stations were used to study drought characteristics, using the standardized precipitation evapotranspiration index (SPEI). The non-parametric Mann-Kendall (MK), Sen’s Slope (SS), and Sequential Mann-Kendall (SQMK) tests were applied on the drought index to determine the statistical significance and magnitude of the historical trend. The state-of-the-art Bayesian Dynamic Linear (BDL) model was further used to analyze large scale climate drivers of droughts, analysis revealed an increase in drought severity mostly over arid to semi-arid regions for both cropping seasons. Temperature played a significant role in defining droughts over dry and hot seasons, while rainfall is influential over the western disturbances (WD) influenced region. The analysis of atmospheric circulation patterns revealed that large-scale changes in wind speed, air temperature, relative humidity and geopotential height anomalies are the likely drivers of droughts in the region. We found that Niño4, Sea Surface Temperature (SST), and multivariate El Niño-Southern Oscillation (ENSO4.0) Index are the most influential factors for seasonal droughts across Pakistan. Overall, the findings provide a better understanding of drought-prone areas in the region, and this information is of potential use for mitigating and managing drought risks.


Sign in / Sign up

Export Citation Format

Share Document