Comparative study on safety of linezolid and vancomycin in the treatment of infants and neonates for Gram-positive bacterial infections

2018 ◽  
Vol 24 (9) ◽  
pp. 695-701 ◽  
Author(s):  
Yuichi Shibata ◽  
Yuka Yamagishi ◽  
Hiroshige Mikamo ◽  
Hideo Kato ◽  
Naoya Nishiyama ◽  
...  
2021 ◽  
Author(s):  
Byungji Kim ◽  
Qinglin Yang ◽  
Leslie W. Chan ◽  
Sangeeta N. Bhatia ◽  
Erkki Ruoslahti ◽  
...  

RNAi-mediated immunotherapy provided by fusogenic porous silicon nanoparticles demonstrates superior therapeutic efficacy against both Gram-positive and Gram-negative bacterial infections compared with first-line antibiotics.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jana Ninkovic ◽  
Vidhu Anand ◽  
Raini Dutta ◽  
Li Zhang ◽  
Anuj Saluja ◽  
...  

Abstract Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (−) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (−) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (−) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers.


Author(s):  
Sanjana Ramakrishnan ◽  
Sourabh Radhakrishnan ◽  
Sonu Lazar Cyriac

Background: Opportunistic bacterial infections remain a serious morbidity among cancer patients. This study was aimed to determine the bacteriological and antibiotic profile of cancer patients admitted to the ICU of a tertiary care centre.Methods: Cross sectional study was done among cancer patients admitted in the Oncology neutropenic ICU during the period from August 2017 to July 2019. All patients admitted with a proven diagnosis of cancer for whom at least one bacterial culture was sent from any site were included in the study. Laboratory on culture reports were obtained from patient files and analysed.Results: A total of 278 samples from 256 patients (60±11.6 years) were analysed. Among the 111/278 positive cultures, 29 were blood samples and 1 was a pleural fluid sample. Gram negative organisms were 62.1% with Escherichia coli (25, 36.2%) as prevalent. Among the 37.8% gram positives, Staphylococcus aureus (18. 42.8%) was prevalent. Most of the E. coli strains showed highest resistance to ceftazidime (96%) and highest sensitivity to amikacin. The commonest gram-positive organism, Staphylococcus species were 100 % sensitive to vancomycin and linezolid and 100 % resistance to penicillin.  Conclusions: E. coli (gram negative) showed highest resistance to ceftazidime and sensitivity to amikacin. S. aureus (gram positive) was sensitive to vancomycin and linezolid and resistance to penicillin. An antibiogram for cancer patients helps the clinician to initiate an appropriate empirical antibiotic therapy to reduce mortality and morbidity.


2017 ◽  
Vol 12 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Minjie Yang ◽  
Jing Zhang ◽  
Yuancheng Chen ◽  
Xiaoyu Liang ◽  
Yan Guo ◽  
...  

2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Dongguang Niu ◽  
Qian Huang ◽  
Fan Yang ◽  
Weiliang Tian ◽  
Chen Li ◽  
...  

Introduction. Contamination of specimens and overuse of broad spectrum antibiotics contribute to false positives and false negatives, respectively. Therefore, useful and applicable biomarkers of bacteremia are still required. Hypothesis/Gap Statement. IL-6 can be used as a serum biomarker to discriminate among bacterial infections and fungal infections in febrile patients with a bloodstream infection. Aim. We aimed to evaluate the diagnostic efficiency of neutrophil/lymphocyte ratio (NLR), procalcitonin (PCT) and interleukin-6 (IL-6) in discriminating Gram-negative (G−) bacteria from Gram-positive (G+) bacteria and fungi in febrile patients. Methodology. A total of 567 patients with fever were evaluated. Serum levels of IL-6, PCT, NLR and CRP were compared among a G− group (n=188), a G+ group (n=168), a fungal group (n=38) and a culture negative group (n=173). Sensitivity, specificity, Yuden’s index and area under the Receiver operating characteristic (ROC) curve (AUC) were obtained to analyse the diagnostic abilities of these biomarkers in discriminating bloodstream infection caused by different pathogens. Results. Serum IL-6 and PCT in the G− group increased significantly when compared with both the G+ group and fungal group (P <0.05). AUC of IL-6 (0.767, 95 % CI:0.725–0.805) is higher than AUC of PCT (0.751, 95 % CI:0.708–0.796) in discriminating the G− group from G+ group. When discriminating the G− group from fungal group, the AUC of IL-6 (0.695, 95 % CI:0.651–0.747) with a cut-off value of 464.3 pg ml−1 was also higher than the AUC of PCT (0.630, 95 % CI:0.585–0.688) with a cut-off value of 0.68 ng ml−1. Additionally, AUC of NLR (0.685, 95 % CI:0.646–0.727) in discriminating the fungal group from G+ group at the cut-off value of 9.03, was higher than AUC of IL-6, PCT and CRP. Conclusion. This study suggests that IL-6 could be used as a serum biomarker to discriminate among bacterial infections and fungal infections in febrile patients with a bloodstream infection. In addition, NLR is valuable to discriminate fungal infections from Gram-positive infections in febrile patients with a bloodstream infection.


Author(s):  
Armine Sefton

Bacterial infections and infestations of man can be caused by both microbes and non-microbes. Microbes include bacteria, viruses, fungi, and protozoa. Non-microbes include worms, insects, and arachnids. This chapter concentrates on the basic biology of bacteria. A pathogen is an organism that is able to cause disease in its host and the pathogenicity of any organism is its ability to produce disease. Microbes express their pathogenicity by means of their virulence. The virulence of any pathogen is determined by any of its structural, biochemical, or genetic features that enable it to cause disease in the host. The relationship between a host and a potential pathogen is non- static; the likelihood of any pathogen causing disease in its host depends both on the virulence of the pathogen and the degree of resistance or susceptibility of the host, due mainly to the effectiveness of the host’s defence mechanisms. Two of the main factors influencing a bacteria’s pathogenicity are its ability to invade and it ability to produce toxins—either exotoxins or endotoxins. Bacteria are unicellular prokaryotic micro-organisms, unlike human cells, which are eukaryotic. Fungi, protozoa, helminths, and arthropods are also eukaryotic. Prokaryotic organisms contain both DNA and RNA, but their genetic material exists unbound in the cytoplasm of the cell as, unlike eukaryotic cells, they have no nuclear membrane. Sometimes bacteria contain additional smaller circular DNA molecules, called plasmids. The main features of a bacterium are the cell wall, cytoplasm, and cell membrane. However, some bacteria have additional features such as spores, capsules, fimbriae (pili), and flagellae. The construction of the cell wall is different in different bacteria, but all cell walls contain peptidoglycan. The structure of the cell wall determines the staining characteristics when stained using the Gram stain. Although its first use was over a hundred and fifty years ago, is still the standard method for primary classification of bacteria. Occasionally, bacteria do not have a cell wall. Gram staining of a fixed smear of bacteria is used to separate bacteria into Gram positive or Gram negative, and also to demonstrate their shape. Bacteria with a thick peptidoglycan layer but with no outer membrane stain purple and are called Gram positive.


2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


2020 ◽  
Vol Volume 13 ◽  
pp. 685-695
Author(s):  
Sooyoung Shin ◽  
Hyun Joo Jung ◽  
Sang-Min Jeon ◽  
Young-Joon Park ◽  
Jung-Woo Chae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document