scholarly journals Critical mechanical properties and FEA simulation for crashworthiness assessment of a coarse-grained cast AM50 alloy

2015 ◽  
Vol 3 (3) ◽  
pp. 188-196 ◽  
Author(s):  
S. Xu ◽  
C.H.M. Simha ◽  
M. Gesing ◽  
J. Liang ◽  
J. Lo

Hydrocarbon gels contain a number of materials, such as rubber, greases, saponified mineral oils, etc., of great interest for various engineering purposes. Specific requirements in mechanical properties have been met by producing gels in appropriately chosen patterns of constituent components of visible, colloidal, molecular and atomic sizes, ranging from coarse-grained aggregates, represented by sponges, foams, emulsions, etc.; to fine-grained and apparently homogeneous ones, represented by optically clear compounds. The engineer who has to deal with the whole range of such materials will adopt a macroscopic point of view, based on an apparent continuity of all the material structures and of the distributions in space and time of the displacements and forces occurring under mechanical actions. It has been possible to determine these distributions in the framework of a comprehensive scheme in which the fundamental principles of the mechanics of continuous media provide the theoretical basis, and a testing instrument of new design, termed Rheogoniometer, the means of experimental measurement (Weissenberg 1931, 1934, 1946, 1947, 1948).


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2008 ◽  
Vol 584-586 ◽  
pp. 182-187
Author(s):  
Lilia Kurmanaeva ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Ruslan Valiev ◽  
Hans Jorg Fecht

Investigations of mechanical properties of nanocrystalline (nc) materials are still in interest of materials science, because they offer wide application as structural materials thanks to their outstanding mechanical properties. NC materials demonstrate superior hardness and strength as compared with their coarse grained counterparts, but very often they possess a limited ductility or show low uniform elongation due to poor strain hardening ability. Here, we present the results of investigation of the microstructure and mechanical properties of nc Pd and Pd-x%Ag (x=20, 60) alloys. The initially coarse grained Pd-x% Ag samples were processed by high pressure torsion, which resulted in formation of homogenous ultrafine grain structure. The increase of Ag contents led to the decrease of the resulted grain size and change in deformation behavior, because of decreasing of stacking fault energy (SFE). The samples with larger Ag contents demonstrated the higher values of hardness, yield stress and ultimate stress. Remarkably the uniform elongation had also increased with increase of strength.


2015 ◽  
Vol 623 ◽  
pp. 62-68 ◽  
Author(s):  
Xiangsheng Xia ◽  
Qiang Chen ◽  
Zude Zhao ◽  
Minglong Ma ◽  
Xinggang Li ◽  
...  

Author(s):  
Tribeni Roy ◽  
Anuj Sharma ◽  
Prabhat Ranjan ◽  
R. Balasubramaniam

Abstract Electrical discharge machined surfaces inherently possess recast layer on the surface with heat affected zone (HAZ) beneath it and these have a detrimental effect on the mechanical properties viz. hardness, elastic modulus, etc. It is very difficult to experimentally characterise each machined surface. Therefore, an attempt is made in this study to numerically calculate the mechanical properties of the parent material, HAZ and the recast layer on a hemispherical protruded micro feature fabricated by reverse micro EDM (RMEDM). In the 1st stage, nano indentation was performed to experimentally determine the load-displacement plots, elastic modulus and hardness of the parent material, HAZ and the recast layer. In the 2nd stage, FEA simulation was carried out to mimic the nano indentation process and determine the load-displacement plots for all the three cases viz. parent material, recast layer and HAZ. Results demonstrated that the load'displacement plots obtained from numerical model in each case was in good agreement with that of the experimental curves. Based on simulated load-displacement plots, hardness was also calculated for parent material, HAZ and the recast layer. A maximum of 11% error was observed between simulated values of hardness and experimentally determined values.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


Sign in / Sign up

Export Citation Format

Share Document