Acute stress suppresses pro-inflammatory cytokines TNF-α and IL-1β independent of a catecholamine-driven increase in IL-10 production

2005 ◽  
Vol 159 (1-2) ◽  
pp. 119-128 ◽  
Author(s):  
Thomas J. Connor ◽  
Charlene Brewer ◽  
John P. Kelly ◽  
Andrew Harkin
2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


Author(s):  
Hadi Nobari ◽  
Jason M. Cholewa ◽  
Jorge Pérez-Gómez ◽  
Alfonso Castillo-Rodríguez

Abstract Objective Systemic elevations in pro-inflammatory cytokines are a marker of non-functional over reaching, and betaine has been shown to reduce the secretion of pro-inflammatory cytokines in vitro. The aim of this study was to investigate the effects of betaine supplementation on tumor necrosis factor alpha (TNF-α), interleukins-1 beta (IL-1β), − 6 (IL-6) and the complete blood cell (CBC) count in professional youth soccer players during a competitive season. Methods Twenty-nine soccer players (age, 15.5 ± 0.3 years) were randomly divided into two groups based on playing position: betaine group (BG, n = 14, 2 g/day) or placebo group (PG, n = 15). During the 14-week period, training load was matched and well-being indicators were monitored daily. The aforementioned cytokines and CBC were assessed at pre- (P1), mid- (P2), and post- (P3) season. Results Significant (p < 0.05) group x time interactions were found for TNF-α, IL-1β, and IL-6. These variables were lower in the BG at P2 and P3 compared to P1, while IL-1β was greater in the PG at P3 compared to P1 (p = 0.033). The CBC count analysis showed there was significant group by time interactions for white blood cells (WBC), red blood cells (RBC), hemoglobin (Hb), and mean corpuscular hemoglobin concentration (MCHC). WBC demonstrated increases at P3 compared to P2 in PG (p = 0.034); RBC was less at P3 compared to P1 in BG (p = 0.020); Hb was greater at P2 compared to P1, whilst it was less at P3 compared to P3 for both groups. MCHC was greater at P3 and P2 compared to P1 in BG, whereas MCHC was significantly lower at P3 compared to P2 in the PG (p = 0.003). Conclusion The results confirmed that 14 weeks of betaine supplementation prevented an increase in pro-inflammatory cytokines and WBC counts. It seems that betaine supplementation may be a useful nutritional strategy to regulate the immune response during a fatiguing soccer season.


2021 ◽  
Vol 8 (21) ◽  
pp. 1731-1732
Author(s):  
Prashant Ramesh Chakkarwar

Coronavirus disease-19 (COVID-19) is the deadliest pandemic that the whole world is facing today. COVID-19 is different from normal flu by its two lethal manifestations which includes deadly pneumonia which may lead to acute respiratory distress syndrome (ARDS) due to hyper-inflammation of alveolar tissues and pulmonary intravascular coagulopathy (PIC).1,2 It is noteworthy here to mention that both these lethal manifestations of COVID-19 are due to abnormally high levels of pro-inflammatory cytokines like interleukin (IL) - 1β, IL - 6, and tumour necrosis factor (TNF) - α, termed as “cytokine storm.”3,4 There is a certain link between pro-inflammatory cytokines like IL - 1β, IL - 6, and TNF - α and its pro-coagulatory influence on coagulation pathway mediated by tissue factor that binds and activate factor VII, leading to formation of tissue factor – VII a complexes which results in the activation of clotting factor X and IX.4 Recently the researchers in China and some European countries have found raised level of pro-inflammatory cytokines particularly IL - 6 in severe cases of COVID-19. They also found raised D-dimer, fibrinogen levels and prothrombin time in moderate to severe COVID-19 cases.5,6 Both of these lethal manifestations of COVID-19 – ARDS and PIC are linked to raised levels of pro-inflammatory cytokines, particularly, IL - 6. It is not very clear that the pro-inflammatory action of cytokines is mediated through leukotrienes as the biochemical assay for leukotrienes are not widely available but possibility of this probable mechanism cannot be ruled out. Hence, development of any molecule with ability to inhibit pro-inflammatory cytokines, particularly IL-6 may be able to tame the lethal nature of COVID-19, and may ultimately reduce the mortality of this deadly pandemic. Montelukast sodium is such molecule which has capacity to inhibit proinflammatory cytokines such as IL - 1β, IL - 6, and TNF - α.7 Montelukast sodium is leukotriene receptor antagonist that inhibits the cysteinyl leukotriene type-1 receptor. Leukotrienes modulate the production of pro-inflammatory cytokines.8 Its antagonist action on leukotriene receptors can inhibit the production of these pro-inflammatory cytokines. Even recent in silico study by Jacobson at Oak Ridge National Lab, was found that excess bradykinin production may be responsible for pulmonary, cardiac, neurological and nephrological lethal manifestations of COVID-19.9 Crimi et al.10 already found that Montelukast is effective to control bradykinin induced bronchoconstriction. Thus, theoretically, montelukast seems to be best molecule to deal with deadly manifestation of COVID-19 even if we go by cytokine storm hypothesis or bradykinin hypothesis.


2012 ◽  
Vol 27 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Renata Cristiane Gennari Bianchi ◽  
Eduardo Rochete Ropelle ◽  
Carlos Kiyoshi Katashima ◽  
José Barreto Campello Carvalheira ◽  
Luiz Roberto Lopes ◽  
...  

PURPOSE: To study if the pre-radiotherapy physical activity has radio-protective elements, by measuring the radio-induced activation of pro-inflammatory cytokines as interleukin-6 (il-6), transforming growth factor -β (tgf -β), tumor necrosis factor -α (tnf-α) and protein beta kinase β (ikkβ), through western blotting analysis. METHODS: A randomized study with 28 Wistar hannover rats, males, with a mean age of 90 days and weighing about 200 grams. The animals were divided into three groups: (GI, GII and GIII). GIII group were submitted to swimming for eight weeks (zero load, three times a week, about 30 minutes). Then, the groups (except the control group) were submitted to irradiation by cobalt therapy, single dose of 3.5 gray in the whole body. All animals were sacrificed by overdose of pentobarbital, according to the time for analysis of cytokines, and then a fragment of the lower lobe of the right lung went to western blotting analysis. RESULTS: The cytokines IKK β, TNF-α and IL-6 induced by radiation in the lung were lower in the exercised animals. However, exercise did not alter the radiation-induced increase in tgf-β. CONCLUSION: The results show a lower response in relation to inflammatory cytokines in the group that practiced the exercise pre-radiotherapy, showing that exercise can protect tissues from tissue damage due to irradiation.


2013 ◽  
Vol 26 (1) ◽  
pp. 37-48 ◽  
Author(s):  
S.M. Nanjundaiah ◽  
J.P. Stains ◽  
K.D. Moudgil

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, bone erosion, and cartilage destruction in the joints. It is increasingly being realized that inflammation might play an important role in inducing bone damage in arthritis. However, there is limited validation of this concept in vivo in well-controlled experimental conditions. We addressed this issue using the adjuvant arthritis (AA) model of RA. In AA, the draining lymph nodes are the main sites of activation of pathogenic leukocytes, which then migrate into the joints leading to the induction of arthritis. We tested the temporal kinetics of mediators of bone damage [e.g., receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and osteopontin (OPN)] and inflammation (pro-inflammatory cytokines and chemokines) in the draining lymph node cells (LNC) at different phases of AA, and then examined their inter-relationships. Our study revealed that, together with cytokines/chemokines, some of the mediators of bone remodeling are also produced in LNC. Various cytokines/chemokines showed distinct kinetics of expression as well as patterns of correlation with mediators of bone remodeling at different phases of the disease. Pro-inflammatory cytokines such as TNF-α are known to play an important role in bone damage. Interestingly, there was a positive correlation between TNF-α and RANKL, between RANKL and each of the 3 chemokines tested (RANTES, MIP-1α, and GRO/KC), and between TNF-α and RANTES. Our results in the AA model lend support to the concept of osteo-immune crosstalk during the course of autoimmune arthritis.


2021 ◽  
Vol 40 (12_suppl) ◽  
pp. S397-S405
Author(s):  
Pankaj Tripathi ◽  
Saeed Alshahrani

Background: Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. Purpose: This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. Methodology: Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. Results: CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA—the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. Conclusions: UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.


2021 ◽  
pp. 1-9
Author(s):  
Hui Li ◽  
Weijia Du ◽  
Yawei Yuan ◽  
Jingjing Xue ◽  
Qiang Li ◽  
...  

<b><i>Introduction:</i></b> Numerous pieces of evidence demonstrated that isoflurane induces hippocampal cell injury and cognitive impairments. Picroside II has been investigated for its anti-apoptosis and antioxidant neuroprotective effects. We aimed to explore the protective effects of picroside II and the role of microRNA-195 (miR-195) on isoflurane-induced neuronal injury in rats. <b><i>Methods:</i></b> The Morris water maze test was used to evaluate the effects of isoflurane on rats regarding escape latency and time in quadrant parameters. Real-time quantitative PCR was used to detect the expression levels of miR-195 and pro-inflammatory cytokines, including inter­leukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) mRNA, in the hippocampal tissues and neuronal cells. <b><i>Results:</i></b> The picroside II significantly improves isoflurane-induced higher escape latency and lower time spent in the quadrant compared with the control rats. Picroside II also promotes cell viability and suppresses cell apoptosis of isoflurane-induced neuronal cells. Besides, picroside II suppresses the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and miR-195 in vivo and in vitro. Furthermore, overexpression of miR-195 abrogates the effects of picroside II on the expression of pro-inflammatory cytokines. The appropriate dose of picroside II is 20 mg/kg. <b><i>Conclusion:</i></b> Picroside II could protect the nervous system possibly through inhibiting the inflammatory response in the isoflurane-induced neuronal injury of rats. The protective effect of picroside II may be achieved by downregulating the expression of miR-195 and then inhibiting the inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document