Development of low cost point-of-use (POU) interventions for instant decontamination of drinking water in developing countries

2020 ◽  
Vol 37 ◽  
pp. 101435
Author(s):  
Rajshree Patil ◽  
Dilshad Ahmad ◽  
Pradeep Balkundae ◽  
Shankar Kausley ◽  
Chetan Malhotra
2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Adam Teusner ◽  
Rhett Butler ◽  
Pierre Le Clech

Fluoride concentrations in drinking water in excess of 1.5 mg L-1 are unsafe for human consumption. To reduce excess fluoride intake, developing countries must use low-cost, point-of-use defluoridation techniques. Although previous work has extensively assessed defluoridation using bone char (BC), most of the advanced studies have been based on the use of fluoridated distilled water as a feed solution. In the present study, BC columns were challenged with a range of model solutions, mimicking various pretreatment options. As a result, the relative impact of dissolved organic carbon (DOC) and suspended solids (SS) on the performance of BC filters was assessed. In addition, the performance of a gravity-driven, hollow fibre ultrafiltration (UF) module was examined with regards to the potential for use as a pretreatment option. SS were observed to severely clog the columns and cause the complete cessation of flow. The subsequent removal of SS by UF improved the general filter performance as well as increasing the BC lifetime by 50 %. The UF module achieved a reduction in DOC of 34 ± 6 %, resulting in an additional 30 % increase in the lifetime of the BC column.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Deepa Dixit ◽  
Virupakshi Soppina ◽  
Chinmay Ghoroi

AbstractAccess to safe drinking water is still a distant dream to millions of people around the world. Especially, people from the low-income group in the developing countries remain deprived of this fundamental right and causes millions of death. There is an urgent need to develop affordable and easy to handle water filter which can provide desired drinking water quality without any electricity. In the present work, a simple and low-cost surface engineered particle (SEP) based filter is developed via alkali treatment of soda-lime-silica particle. The SEP based filter can be used as a portable, non-electric, gravity-driven Point-of-Use (POU) water disinfection system. The developed SEP-based filter is capable to arrest the 99.48% (~2 to 2.5 log10 reduction) of gram-negative bacteria Escherichia coli (E. coli OP50) on its surface from the water containing 3 × 108 cells/ml. No bacterial regrowth is observed in the purified water for 12 h. The performance of SEP bed filter is implicated to the nano-scale surface roughness, its distribution along with the surface charge and surface hydrophobicity which are favorable to attract and adhere the bacteria in the flowing water. The observation is consistent over multiple filtration cycles indicating the suitability of SEP based bed filter for POU water disinfection. The SEP surface with 0.05 mM Ag+ loading (SEP+) completely inactivated (>99.99999%) bacteria and protects any bacteria recontamination in the purified water for its long term usage. The strong and effective silver binding property of SEP surface enables very minimal silver loading and eliminates any health hazard due to low silver leaching (~50 ppb) which is well below the drinking water equivalent level (DWEL ≤ 100 ppb). In rural and urban slum areas of developing countries where no water purification system exists prior to consumption, the easy-to-implement and affordable SEP-based gravity-driven non-electric point-of-use water purifier (materials cost ~ 0.25 USD) can be used to protect millions of lives from water borne diseases.


2008 ◽  
Vol 5 (1) ◽  
pp. 68 ◽  
Author(s):  
Patricia Miretzky ◽  
Carolina Muñoz ◽  
Alejandro Carrillo-Chávez

Environmental context. Fluoride concentrations in drinking water above 1.5 mg L–1 may be detrimental to human health. Many methods have been developed for removing excessive fluoride from drinking water. The use of an aquatic macrophyte biomass (Eleocharis acicularis) pretreated with Ca2+, a low-cost natural material, could be a technique for rural populations in developing countries that cannot afford treated or bottled water for daily consumption. Abstract. The use of an aquatic macrophyte biomass (Eleocharis acicularis) pretreated with Ca2+ as a low-cost natural material for the removal of fluoride from aqueous solution was studied. Batch experiments were carried out to determine fluoride sorption capacity and the efficiency of the sorption process under different pH, initial F– and macrophyte biomass doses. The experimental data showed good fitting to Langmuir and Freundlich isotherm models. The maximum F adsorption capacity was 0.110 mmol g–1 with an efficiency of 64.5% (pH 6.0; 5.0 g L–1 Ca-pretreated biomass). The binding of Ca2+ to the biomass increased the removal efficiency over 100%. The F– removal kinetics were rapid, less than 30 min, and best described by the pseudo-second order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. These results may be useful for deprived rural population water supply schemes in Mexico and in other developing countries.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 59-62
Author(s):  
Robert W. Seabloom ◽  
Dale A. Carlson

The majority of people in developing countries are without reasonable access to safe drinking water and are forced to live without proper sanitation. This lack of safe water and poor sanitation is the major cause of untold misery, disability, disease and death. The United Nations declared the 1980's as the “International Drinking Water Supply and Sanitation Decade” with the lofty goal of safe water and adequate sanitation for all by 1990. Realizing it required about 150 years for sanitation systems to evolve in the developed nations, it is important that the developing nations learn from their mistakes. The future sanitation systems for developing countries must use appropriate low cost technologies, rather than the conventional high cost water carriage sewerage technology of the developed nations. These low cost solutions when properly sited, designed, constructed and maintained are no less prestigious and as the overall environmental impacts become understood are in many instances the preferred solution.


2003 ◽  
Vol 1 (2) ◽  
pp. 73-84 ◽  
Author(s):  
Philip F. Souter ◽  
Graeme D. Cruickshank ◽  
Melanie Z. Tankerville ◽  
Bruce H. Keswick ◽  
Brian D. Ellis ◽  
...  

Contamination of drinking water by microorganisms and arsenic represents a major human health hazard in many parts of the world. An estimated 3.4 million deaths a year are attributable to waterborne diseases. Arsenic poisoning from contaminated water sources is causing a major health emergency in some countries such as Bangladesh where 35 to 77 million people are at risk.The World Health Organization (WHO) has recently recognized point-of-use water treatment as an effective means of reducing illness in developing country households. A new point-of-use water treatment system that is based on flocculation, sedimentation and disinfection was evaluated for the removal of bacterial, viral and parasitic pathogens as well as arsenic from drinking water to estimate its potential for use in developing countries.Tests were conducted with United States Environmental Protection Agency (EPA)-model and field- sample waters from developing countries. Samples were seeded with known numbers of organisms, treated with the combined flocculation/disinfection product, and assayed for survivors using standard assay techniques appropriate for the organism.Results indicated that this treatment system reduced the levels from 108/l to undetectable (<1) of 14 types of representative waterborne bacterial pathogens including Salmonella typhi and Vibrio cholerae. No Escherichia coli were detected post-treatment in 320 field water samples collected from five developing countries. In addition, the water treatment system reduced polio and rotavirus titres by greater than 4-log values. Cyrptosporidium parvum and Giardia lamblia inocula were reduced by greater than 3-log values following use of this water treatment system. Arsenic, added to laboratory test waters, was reduced by 99.8%, and naturally occurring arsenic in field samples from highly contaminated Bangladeshi wells was reduced by 99.5% to mean levels of 1.2 µg/l.This water treatment system has demonstrated the potential to provide improved drinking water to households in developing countries by removing microbial and arsenic contaminants.


2014 ◽  
Vol 13 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Rajshree A. Patil ◽  
Dilshad Ahmad ◽  
Shankar B. Kausley ◽  
Pradeep L. Balkunde ◽  
Chetan P. Malhotra

Simple, low-cost household interventions are known to be effective in lowering the incidence of waterborne diseases in developing countries. However, high costs along with operational and maintenance issues have prevented the successful adoption of these interventions among the affected communities. To address these limitations, a cost-effective, gravity-driven water purification cartridge has been developed by employing the synergistic disinfection action of low concentrations of silver and chlorine on bacteria and viruses. The silver and chlorine treatment components within the cartridge have been developed using inexpensive materials and integrated with a life indicator and auto-shut-off-mechanism within a compact form factor. The antibacterial as well as antiviral performance of the cartridge was tested by using ground water spiked with Escherichia coli and MS2 bacteriophage. The results show that, although individually, the silver and chlorine treatment systems were unable to inactivate the test strains, the integrated cartridge inactivates both bacteria as well as viruses up to the log reduction requirement of the USEPA guide standard for microbiological water purifiers over its designated life of 2,000 liters.


2020 ◽  
Vol 14 (5) ◽  
pp. 1921-1927
Author(s):  
Boris Merlain Djousse Kanouo ◽  
Mathias Fru Fonteh ◽  
Steve Pindjou Ngambo

Regular intake of drinking water containing fluoride above permissible levels (>1.5 mgl-1) is responsible for dental and skeletal fluorosis. The objective of this study was to develop a low cost and efficient water defluoridation filter using local materials. The filter frame was made from Polyvinyl chloride pipe of 125 mm diameter and 1 m height, with a useful filtration volume of 9.55 l. The filtration layer consisted of a sequence of three strata: gravel, bone-char and sand, giving a total weight of 15 kg. Based on the concentration of fluoride in drinking water in parts of northern Cameroon, three different fluoride ion concentrations (10 mgl-1, 20 mgl-1 and 30 mgl-1) were prepared in the laboratory using distilled water and allowed to flow through the filter at the rate of 3.33 lh-1. High fluoride uptake capacity was observed (94.8% to 99.1%), depicting the suitability of the filter in defluoridation. The constructed filter costed about 17 US$. Based on these results, the filter can be recommended as an appropriate technology to mitigate fluoride health hazards problems in low income families. Although the estimated replacement frequency of biochar was three months, further research is required to optimize the point of use system performances.Keywords: Bone-char, water filter, fluoride.


2012 ◽  
Vol 11 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Atif Mustafa ◽  
Miklas Scholz ◽  
Sadia Khan ◽  
Abdul Ghaffar

A sustainable and low-cost point-of-use household drinking water solar disinfection (SODIS) technology was successfully applied to treat microbiologically contaminated water. Field experiments were conducted to determine the efficiency of SODIS and evaluate the potential benefits and limitations of SODIS under local climatic conditions in Karachi, Pakistan. In order to enhance the efficiency of SODIS, the application of physical interventions were also investigated. Twenty per cent of the total samples met drinking water guidelines under strong sunlight weather conditions, showing that SODIS is effective for complete disinfection under specific conditions. Physical interventions, including black-backed and reflecting rear surfaces in the batch reactors, enhanced SODIS performance. Microbial regrowth was also investigated and found to be more controlled in reactors with reflective and black-backed surfaces. The transfer of plasticizer di(2-ethylhexyl)phthalate (DEHP) released from the bottle material polyethylene terephthalate (PET) under SODIS conditions was also investigated. The maximum DEHP concentration in SODIS-treated water was 0.38 μg/L less than the value of 0.71 μg/L reported in a previous study and well below the WHO drinking-quality guideline value. Thus SODIS-treated water can successfully be used by the people living in squatter settlements of mega-cities, such as Karachi, with some limitations.


Sign in / Sign up

Export Citation Format

Share Document