Simultaneous, rapid and sensitive detection of three food-borne pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food samples

LWT ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Beibei Wang ◽  
Qi Wang ◽  
Zhaoxia Cai ◽  
Meihu Ma
2019 ◽  
Vol 146 ◽  
pp. 111754 ◽  
Author(s):  
Chongwen Wang ◽  
Rui Xiao ◽  
Shu Wang ◽  
Xingsheng Yang ◽  
Zikun Bai ◽  
...  

Food Control ◽  
2021 ◽  
pp. 108419
Author(s):  
Rui Liu ◽  
Shujat Ali ◽  
Suleiman A. Haruna ◽  
Qin Ouyang ◽  
Huanhuan Li ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 979 ◽  
Author(s):  
Fei Wang ◽  
Jin Zhang ◽  
Bo Zhu ◽  
Jie Wang ◽  
Qiao Wang ◽  
...  

Salmonella is one of the most common food-borne pathogens. It can be transmitted between chickens, as well as to people by contaminated poultry products. In our study, we distinguished chickens with different resistances mainly based on bacterial loads. We compared the cecal tonsil transcriptomes between the susceptible and resistant chickens after Salmonella infection, aiming to identify the crucial genes participating in the antibacterial activity in the cecal tonsil. A total of 3214 differentially expressed genes (DEGs), including 2092 upregulated and 1122 downregulated genes, were identified between the two groups (fold change ≥ 2.0, padj < 0.05). Many DEGs were mainly involved in the regulation of two biological processes: crosstalk between the cecal tonsil epithelium and pathogenic bacteria, such as focal adhesion, extracellular-matrix–receptor interaction, and regulation of the actin cytoskeleton and host immune response including the cytokine–receptor interaction. In particular, the challenged resistant birds exhibited strong activation of the intestinal immune network for IgA production, which perhaps contributed to the resistance to Salmonella infection. These findings give insight into the mRNA profile of the cecal tonsil between the two groups after initial Salmonella stimulation, which may extend the known complexity of molecular mechanisms in chicken immune response to Salmonella.


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-176
Author(s):  
Abdallah S. Abdelsattar ◽  
Anan Safwat ◽  
Rana Nofal ◽  
Amera Elsayed ◽  
Salsabil Makky ◽  
...  

Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.


Author(s):  
Kai Chen ◽  
Biao Ma ◽  
Jiali Li ◽  
Erjing Chen ◽  
Ying Xu ◽  
...  

Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.


The Analyst ◽  
2021 ◽  
Author(s):  
Chuyan Zhang ◽  
Zewei Luo ◽  
Mengfan Wu ◽  
Wei Ning ◽  
Ziyi Tian ◽  
...  

Sensitive and efficient monitoring of food-borne bacteria is of great importance for food safety control. Herein, a novel biosensor for highly sensitive detection of Staphylococcus aureus (S. aureus) was constructed...


2005 ◽  
Vol 68 (5) ◽  
pp. 1093-1096 ◽  
Author(s):  
K. E. KNIEL ◽  
M. C. JENKINS

The purpose of this study was to determine if the viral symbiont of Cryptosporidium parvum (CPV) sporozoites could be used as a target for sensitive detection of the parasite in food samples. Polyclonal sera specific to the recombinant viral capsid protein (rCPV40) was used in a dot blot hybridization assay to detect oocysts recovered from green onions and cilantro. Small batches of chopped green onions and cilantro leaves were artificially contaminated with three different concentrations of oocysts: 106, 102, and 101. rCPV40 was superior in detecting oocysts compared with other antibodies directed toward total oocyst protein and oocyst surface antigens. This study provides evidence that CPV is an excellent target for sensitive detection of C. parvum oocysts in foods.


Sign in / Sign up

Export Citation Format

Share Document