Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag

2016 ◽  
Vol 167 ◽  
pp. 246-249 ◽  
Author(s):  
Chen-chen Li ◽  
Xiu-chen Qiao ◽  
Jian-guo Yu
2020 ◽  
Vol 100 ◽  
pp. 106084
Author(s):  
Jinyi Zhang ◽  
Jing Zuo ◽  
Yinshan Jiang ◽  
Dandan Zhu ◽  
Jiupeng Zhang ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 902
Author(s):  
Feng Wu ◽  
Hui Li ◽  
Kang Yang

Coal-gasification slag (CGS) was subjected to mechanical grinding by three different methods. We studied the effects of mechanical activation on various physical and chemical characteristics of the CGS, including particle-size distribution, specific surface area, mineral composition, degree of crystallinity, particle morphology, chemical bonding, surface activity and binding energy, anionic-polymerization degree and hydration properties. The results show that there are different effects on CGS characteristics depending on the type of activation applied. Mechanical activation also can increase the specific surface area and the dissolution rates of activated SiO2 and Al2O3, and the major elements (O, Si, Al, Ca) in CGS, whereas the degree of crystallinity and of polymerization of [SiO4] and [AlO6] are reduced by mechanical activation. We also found that the effects of different mechanical-activation methods on the compressive strength and activity were similar and could accelerate the hydration process.


2021 ◽  
Author(s):  
Jiupeng Zhang ◽  
Jing Zuo ◽  
Yang Liu ◽  
Junyu Zhang ◽  
Wenjing Fu ◽  
...  

Abstract Mesoporous adsorbents and polymer deodorants are difficult to implement on a large scale because of their complicated preparation methods. Herein, a mesoporous adsorbent (CGSA) with a specific surface area of 564 m2 g−1 and a pore volume of 0.807 cm3 g−1 was prepared from solid waste coal gasification slag (CGS) using a simple acid leaching process. The adsorption thermodynamics and adsorption kinetics results verified that the adsorption mechanism of propane on CGSA was mainly physisorption. Then the universality of CGSA in different polymers was investigated by introducing CGSA and its commercialized counterparts (CaCO3, and zeolite) into four common polymers. When the filler content was 30 wt%, the average reinforcement effect of CGSA on the tensile, flexural, and impact strengths of the four polymers was 46.68, 83.62, and 211.90% higher than that of CaCO3, respectively. Gas chromatography results also showed that CGSA significantly decreased total volatile organic compound (VOCs) emissions from the composites, and its optimal deodorization performance reached 69.58, 81.33, and 91.09% for different polymers, respectively, far exceeding that of zeolite. Therefore, this study showed that low-cost, high-performance, and multifunctional mesoporous polymer fillers with excellent universality can be manufactured from solid contaminants.


2021 ◽  
Vol 325 ◽  
pp. 124703
Author(s):  
Tao Liu ◽  
Mukesh Kumar Awasthi ◽  
Minna Jiao ◽  
Sanjeev Kumar Awasthi ◽  
Shiyi Qin ◽  
...  

Author(s):  
Mengke Wang ◽  
Jun Zhu ◽  
You Zi ◽  
Zheng-Guang Wu ◽  
Haiguo Hu ◽  
...  

In recent years, two-dimensional (2D) black phosphorus (BP) has been widely applied in many fields, such as (opto)electronics, transistors, catalysis and biomedical applications due to its large surface area, tunable...


Author(s):  
Chunmei Tang ◽  
Xiaoxu Wang ◽  
Shengli Zhang

Two-dimensional MXene nanomaterials are promising anode materials for Li-ion batteries (LIBs) due to their excellent conductivity, large surface area, and high Li capability.


2019 ◽  
Vol 11 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Anand Maurya ◽  
Anurag Kumar Singh ◽  
Gaurav Mishra ◽  
Komal Kumari ◽  
Arati Rai ◽  
...  

Since the development of first lipid-based nanocarrier system, about 15% of the present pharmaceutical market uses nanomedicines to achieve medical benefits. Nanotechnology is an advanced area to meliorate the delivery of compounds for improved medical diagnosis and curing disease. Nanomedicines are gaining significant interest due to the ultra small size and large surface area to mass ratio. In this review, we discuss the potential of nanotechnology in delivering of active moieties for the disease therapy including their toxicity evidences. This communication will help the formulation scientists in understanding and exploring the new aspects of nanotechnology in the field of nanomedicine.


2021 ◽  
Vol 875 ◽  
pp. 160034
Author(s):  
Na Liu ◽  
Fan Fan ◽  
Wei Xu ◽  
Hao Zhang ◽  
Qi Zhou ◽  
...  

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


Author(s):  
Rohit Karnik ◽  
Chuanhua Duan ◽  
Kenneth Castelino ◽  
Rong Fan ◽  
Peidong Yang ◽  
...  

Interesting transport phenomena arise when fluids are confined to nanoscale dimensions in the range of 1–100 nm. We examine three distinct effects that influence ionic and molecular transport as the size of fluidic channels is decreased to the nanoscale. First, the length scale of electrostatic interactions in aqueous solutions becomes comparable to nanochannel size and the number of surface charges becomes comparable to the number of ions in the channel. Second, the size of the channel becomes comparable to the size of biomolecules such as proteins and DNA. Third, large surface area-to-volume ratios result in rapid rates of surface reactions and can dramatically affect transport of molecules through the channel. These phenomena enable us to control transport of ions and molecules in unique ways that are not possible in larger channels. Electrostatic interactions enable local control of ionic concentrations and transport inside nanochannels through field effect in a nanofluidic transistor, which is analogous to the metal-oxide-semiconductor field effect transistor. Furthermore, by controlling surface charge in nanochannels, it is possible to create a nanofluidic diode that rectifies ionic transport through the channel. Biological binding events result in partial blockage of the channel, and can thus be sensed by a decrease in nanochannel conductance. At low ionic concentrations, the effect of biomolecular charge is dominant and it can lead to an increase in conductance. Surface reactions can also be used to control transport of molecules though the channel due to the large surface area-to-volume ratios. Rapid surface reactions enable a new technique of diffusion-limited patterning (DLP), which is useful for patterning of biomolecules and surface charge in nanochannels. These examples illustrate how electrostatic interactions, biomolecular size, and surface reactions can be used for controlling ionic and molecular transport through nanochannels. These phenomena may be useful for operations such as analyte focusing, pH and ionic concentration control, and biosensing in micro- and nanofluidic devices.


Sign in / Sign up

Export Citation Format

Share Document