Advanced anticorrosive coating prepared from poly [N-(Pyridine-2-yl) maleamic acid]/graphene derivatives nanocomposites

Author(s):  
Rawaa Abbas Mohammed ◽  
Khulood A. Saleh
Author(s):  
Muna I Khalaf ◽  
Khulood A Saleh ◽  
Khalil S Khalil

Electro polymerization of N-benzothiazolyl maleamic acid (NBM) was carried out on stainless steel plate electrode in a protic medium of monomer aqueous solution using electrochemical oxidation procedure in electrochemical cell.Spectroscopic characterization techniques were investigated to obtain information about the chemical structure of polymer. The anti-corrosion action of polymer was investigated on stainless steel by electrochemical polarization method. In addition, the effect of adding nanomaterial (TiO2, ZnO (bulk-nano)) to monomer solution on the corrosion behavior of stainless steel was investigated. The results obtained showed that the corrosion rate of S-steel increased with temperature increase from 293K to 323K and the values of inhibition efficiency by coating polymer increase with nanomaterial addition. Apparent energies of activation have been calculated for the corrosion process of S-steel in acidic medium before and after polymeric coating. Furthermore were studied the effect of the preparing polymer on some strain of bacteria.


Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


2020 ◽  
Vol 21 (11) ◽  
pp. 1016-1027 ◽  
Author(s):  
Fatemeh Emadi ◽  
Arash Emadi ◽  
Ahmad Gholami

Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.


2021 ◽  
Vol 56 (16) ◽  
pp. 10041-10052
Author(s):  
Laura Sánchez-Abella ◽  
Virginia Ruiz ◽  
Adrián Pérez-San Vicente ◽  
Hans-Jürgen Grande ◽  
Iraida Loinaz ◽  
...  

2021 ◽  
Vol 290 ◽  
pp. 129504
Author(s):  
Xiaohong Ji ◽  
Wei Wang ◽  
Xia Zhao ◽  
Binbin Zhang ◽  
Shibo Chen ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


Author(s):  
Minju Park ◽  
Namhee Kim ◽  
Jiyoung Lee ◽  
Minsu Gu ◽  
Byeong-Su Kim

Even though many graphene derivatives that are atomically thin two-dimensional structures, such as graphene oxide (GO), have triggered enormous interest in the scientific and industrial communities owing to their easy...


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4374
Author(s):  
Wu-Jian Long ◽  
Xuanhan Zhang ◽  
Biqin Dong ◽  
Yuan Fang ◽  
Tao-Hua Ye ◽  
...  

Reduced graphene oxide (rGO) has been widely used to modify the mechanical performance of alkali activated slag composites (AASC); however, the mechanism is still unclear and the electrical properties of rGO reinforced AASC are unknown. Here, the rheological, mechanical, and electrical properties of the AASC containing rGO nanosheets (0, 0.1, 0.2, and 0.3 wt.%) are investigated. Results showed that rGO nanosheets addition can significantly improve the yield stress, plastic viscosity, thixotropy, and compressive strength of the AASC. The addition of 0.3 wt.% rGO nanosheets increased the stress, viscosity, thixotropy, and strength by 186.77 times, 3.68 times, 15.15 times, and 21.02%, respectively. As for electrical properties, the impedance of the AASC increased when the rGO content was less than 0.2 wt.% but decreased with the increasing dosage. In contrast, the dielectric constant and electrical conductivity of the AASC containing rGO nanosheets decreased and then increased, which can be attributed to the abundant interlayer water and the increasing structural defects as the storage sites for charge carriers, respectively. In addition, the effect of graphene oxide (GO) on the AASC is also studied and the results indicated that the agglomeration of GO nanosheets largely inhibited the application of it in the AASC, even with a small dosage.


2021 ◽  
Vol 5 (7) ◽  
pp. 181
Author(s):  
Dibyani Sahu ◽  
Harekrushna Sutar ◽  
Pragyan Senapati ◽  
Rabiranjan Murmu ◽  
Debashis Roy

Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. This article centres around the strategies to orchestrate graphene and its applications in an attempt to sum up the advancements that has taken place in the research of graphene.


Chemosphere ◽  
2021 ◽  
pp. 131892
Author(s):  
Yasser Vasseghian ◽  
Elena-Niculina Dragoi ◽  
Fares Almomani ◽  
Van Thuan Le

Sign in / Sign up

Export Citation Format

Share Document