Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice

2008 ◽  
Vol 28 (4) ◽  
pp. 278-284 ◽  
Author(s):  
Xiang-Yang Qi ◽  
Wei-Jun Chen ◽  
Li-Qin Zhang ◽  
Bi-Jun Xie
2019 ◽  
Vol 20 (S1) ◽  
Author(s):  
Camila F. A. Giordani ◽  
Sarah Campanharo ◽  
Nathalie R. Wingert ◽  
Lívia M. Bueno ◽  
Joanna W. Manoel ◽  
...  

Abstract Background The presence of impurities in some drugs may compromise the safety and efficacy of the patient’s treatment. Therefore, establishing of the biological safety of the impurities is essential. Diabetic patients are predisposed to tissue damage due to an increased oxidative stress process; and drug impurities may contribute to these toxic effects. In this context, the aim of this work was to study the toxicity, in 3 T3 cells, of the antidiabetic agents sitagliptin, vildagliptin, and their two main impurities of synthesis (S1 and S2; V1 and V2, respectively). Methods MTT reduction and neutral red uptake assays were performed in cytotoxicity tests. In addition, DNA damage (measured by comet assay), intracellular free radicals (by DCF), NO production, and mitochondrial membrane potential (ΔψM) were evaluated. Results Cytotoxicity was observed for impurity V2. Free radicals generation was found at 1000 μM of sitagliptin and 10 μM of both vildagliptin impurities (V1 and V2). A decrease in NO production was observed for all vildagliptin concentrations. No alterations were observed in ΔψM or DNA damage at the tested concentrations. Conclusions This study demonstrated that the presence of impurities might increase the cytotoxicity and oxidative stress of the pharmaceutical formulations at the concentrations studied.


2022 ◽  
Author(s):  
Jan Homolak ◽  
Ana Babic Perhoc ◽  
Mihovil Joja ◽  
Ivan Kodvanj ◽  
Karlo Toljan ◽  
...  

Antioxidant enzyme catalase protects the cells against alcohol-induced oxidative stress by scavenging free radicals and metabolizing alcohol. Concentrations of ethanol present in alcoholic beverages can inhibit catalase and foster oxidative stress and alcohol-induced injury. Non-alcoholic components of pelinkovac counteract the inhibitory effects of high ethanol concentration and acidic pH on catalase in vitro.


2021 ◽  
Vol 64 (2) ◽  
pp. 239-249
Author(s):  
Fatai O. Balogun ◽  
Anofi O.T. Ashafa

The study evaluated the effects of green absorbed zinc oxide nanostructures on oxidative stress-mediated free radicals and carbohydrate-hydrolysing enzymes. The synthesised Lessertia montana zinc oxide nanoparticles were characterised using different spectroscopic, microscopic, and diffraction techniques. The activity of L. montana ZnONPs against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), metal chelating assay, alpha-amylase and alphaglucosidase were determined using standard methods. L. montana ZnONPs were stable nanoparticles (NPs), appeared cubical (predominantly) in shape, and in nanometre range sizes. The synthesised NPs are very active (p < 0.05) against DPPH and alpha-glucosidase (0.120 and 0.037 g/L, respectively) when compared with other samples and controls, quercetin (0.349 g/L) and acarbose (0.065 g/L). However, their interaction with quercetin revealed a good ABTS (0.093 g/L) scavenging and an excellent metal chelating (0.027 g/L) effect compared to other samples. The mode of inhibition of alpha-amylase and alpha-glucosidase enzymes by L. montana ZnONPs was competitive and non-competitive, respectively. The study outcomes revealed that the synthesised ZnONPs possessed the potential to mitigate oxidative stress and diabetes in vitro.


2020 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Nur Ariska Nugrahani

Radikal bebas yang berbahaya jika konsentrasi ROS akan meningkat sehingga akan mengakibatkan stress oksidatif. Stress oksidatif biasanya disebabkan oleh konsentrasi tinggi dari radikal bebas dalam sel dan jaringan yang dapat diinduksi oleh beberapa faktor negatif seperti gamma, UV, radiasi sinar-X, tekanan psiko-emosional dan makanan yang tercemar.Untuk meminimalisir radikal bebas dalam tubuh diperlukan antioksidan alami seperti ekstrak buah kiwi dan ekstrak buah apel. Uji aktivitas antioksidan pada masing- masing ekstrak dilakukan dengan metode DPPH (1,1- difenil-2-pikrihidazil). Hasil menunjukkan bahwa nilai IC50 dari ekstrak buah kiwi lebih rendah daripada IC50 ekstrak buah apel. Hal ini menunjukkan bahwa ekstrak buah kiwi mempunyai aktivitas antioksidan lebih kuat dari ekstrak buah apel. Keyword : Radikal bebas, DPPH, Ekstrak buah kiwi, Ekstrak buah apel Free radicals will be dangerous if the ROS concentration will increase and causes oxidative stress. Oxidative stress is usually caused by high concentrations of free radicals in cells and tissues which can be induced by several negative factors such as gamma, UV, X-ray radiation, psycho-emotional pressure and contaminated food. To minimize free radicals in the body natural antioxidants such as kiwi fruit extract and apple extract. The antioxidant activity test on each extract was carried out by the DPPH method (1,1-diphenyl-2-picrihydazyl). The results showed that IC50 value of kiwi fruit extract was lower than IC50 of apple fruit extract. This shows that kiwi fruit extract has stronger antioxidant activity than apple extract. Keyword : free radicals, DPPH, kiwi fruit extract, apple fruit extract


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sonia Gandhi ◽  
Andrey Y. Abramov

Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Bo Zhao ◽  
Quan Yuan ◽  
Jia-bao Hou ◽  
Zhong-yuan Xia ◽  
Li-ying Zhan ◽  
...  

Background. A substantial increase in histone deacetylase 3 (HDAC3) expression is implicated in the pathological process of diabetes and stroke. However, it is unclear whether HDAC3 plays an important role in diabetes complicated with stroke. We aimed to explore the role and the potential mechanisms of HDAC3 in cerebral ischemia/reperfusion (I/R) injury in diabetic state. Methods. Diabetic mice were subjected to 1 h ischemia, followed by 24 h reperfusion. PC12 cells were exposed to high glucose for 24 h, followed by 3 h of hypoxia and 6 h of reoxygenation (H/R). Diabetic mice received RGFP966 (the specific HDAC3 inhibitor) or vehicle 30 minutes before the middle cerebral artery occlusion (MCAO), and high glucose-incubated PC12 cells were pretreated with RGFP966 or vehicle 6 h before H/R. Results. HDAC3 inhibition reduced the cerebral infarct volume, ameliorated pathological changes, improved the cell viability and cytotoxicity, alleviated apoptosis, attenuated oxidative stress, and enhanced autophagy in cerebral I/R injury model in diabetic state in vivo and in vitro. Furthermore, we found that the expression of HDAC3 was remarkably amplified, and the Bmal1 expression was notably decreased in diabetic mice with cerebral I/R, whereas this phenomenon was obviously reversed by RGFP966 pretreatment. Conclusions. These results suggested that the HDAC3 was involved in the pathological process of the complex disease of diabetic stroke. Suppression of HDAC3 exerted protective effects against cerebral I/R injury in diabetic state in vivo and in vitro via the modulation of oxidative stress, apoptosis, and autophagy, which might be mediated by the upregulation of Bmal1.


2021 ◽  
Vol 11 (7) ◽  
pp. 333
Author(s):  
Danik Martirosyan ◽  
Masoomeh Shahnazari-Aval ◽  
Mohammad Reza Ashoori ◽  
Afsaneh Seyed Mikaeili ◽  
Manouchehr Nakhjavani ◽  
...  

Background: The main purpose of this study was to investigate whether or not electron beam therapy (EBT) was an effective method in terms of moderating oxidative stress by reducing free radicals in BALB/c mice with type 1 diabetes mellitus.Methods: The study was performed on thirty BALB/c mice in three groups including normal control, diabetic control, and EBT treated. Before studying the effect of electron beam on the studied groups, optimal level of constant source-to-surface distance, as well as the effects of EBT on glutathione reductase (GR) structure and function were determined. After studying the structure and the function of GR protein with three methods including fluorometry, circular dichroism (CD), and activity assay methods, SSD 100 was selected for EBT. Glucose, advanced glycation end-products, GR, oxidative stress factors such as hydrogen peroxide, malondialdehyde, advanced oxidation protein products, oxidized low-density lipoprotein, and inflammatory factors were measured in the serum of all groups.Results: The results of in vitro study showed that electron beam therapy could increase glutathione reductase activity, which was not significant. Also, the results were compared between and within groups using one-way analysis of variance. Significant differences were observed for all variables measured between the normal control group and the other groups (P < 0.05). There was also no significant difference in blood glucose levels between the electron beam therapy treated group and the diabetic one (P > 0.05).Conclusion: The results suggested that electron beam therapy could be effective in reducing free radicals and oxidative stress. Electron beam therapy, as a complementary method, might aid in moderating the complications of diabetes mellitus.Keywords: Diabetes mellitus, Electron beam, Inflammatory factors, Oxidative stress


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
C. Banfi ◽  
R. Baetta ◽  
S. S. Barbieri ◽  
M. Brioschi ◽  
A. Guarino ◽  
...  

AbstractThe research into the pathophysiology of atherosclerosis has considerably increased our understanding of the disease complexity, but still many questions remain unanswered, both mechanistically and pharmacologically. Here, we provided evidence that the pro-oxidant enzyme Prenylcysteine Oxidase 1 (PCYOX1), in the human atherosclerotic lesions, is both synthesized locally and transported within the subintimal space by proatherogenic lipoproteins accumulating in the arterial wall during atherogenesis. Further, Pcyox1 deficiency in Apoe-/- mice retards atheroprogression, is associated with decreased features of lesion vulnerability and lower levels of lipid peroxidation, reduces plasma lipid levels and inflammation. PCYOX1 silencing in vitro affects the cellular proteome by influencing multiple functions related to inflammation, oxidative stress, and platelet adhesion. Collectively, these findings identify the pro-oxidant enzyme PCYOX1 as an emerging player in atherogenesis and, therefore, understanding the biology and mechanisms of all functions of this unique enzyme is likely to provide additional therapeutic opportunities in addressing atherosclerosis.


Author(s):  
Gyanendra Narayan Mohapatra ◽  
Bimala Tripathy ◽  
B.V.V. Ravi Kumar ◽  
Bimalendu Chowdhury ◽  
Rajaram Das

Background: Presence of free radicals in human body are harmful and cell systems are induce many diseases like cardiovascular, diabetes, cancer, inflammation, neuro-degenerative disorder, atherosclerosis, cataract, etc. Antioxidants can balance the effect of free radicals. Antioxidant-rich herbs are identified for preparation of drugs that can be administered to neutralize the free radicals. In the present context the selected medicinal plant is “Origanum majorana” (Family- Lamiaceae) widely known as Marwa in India sub-continent. As the medical professionals show their desires towards composite or lateral treatment, application of drugs with herbal origin gained its importance. Objective: This review presented various in vitro and in vivo methods used in the antioxidant activity study of O.majorana and observed its efficacy to reduce oxidative stress. Methods: Referred many reliable sources like Research gate, PubMed, Science Direct, Google scholar, Wiley online library, books to collect all information about the antioxidant activity of the selected plant. Results: Used several methods to determine the antioxidants activity of O.majorana, such as superoxide radical scavenging, ferric ion reducing antioxidant potency, thiobarbituric acid reactive substances, hydrogen peroxide scavenging, hydroxyl radical scavenging, lipid peroxidation inhibition, etc. The selected plant contains many phytoconstituents such as gallic acid, ferulic acid, apigenin, catechin, rutin, quercetin, luteolin, linolenic acid, β-sitosterol, and essential oils, which may be responsible for antioxidant activity. Conclusions : The review article provides information for investigating and developing new antioxidant methods and major phytoconstituents from O.majorana for better therapy of oxidative stress-mediated complications.


Author(s):  
Kitlangki Suchiang ◽  
Nitasha H Kayde

Background: Phlogacanthus thyrsiflorus Nees (P. thyrsiflorus) of Acanthaceae family is endogenous to sub-tropical Himalayas. It has been reported to be used traditionally in Jaintia tribe of Meghalaya, India for treatment of many ailments.Objectives: The aim was to detect the active compounds present in the leaves for evaluation of in vitro free radicals scavenging potentials. Leaves protective actions in vivo will be investigated using Caenorhabditis elegans (C. elegans) model system utilizing wild type and mutant strains and the phenomena of host-pathogens interactions.Materials and methods: Gas chromatography/ Mass spectrometry (GC/MS) was used for detection of different compounds present. The versatility of leaf extracts to scavenge different free radicals generated in vitro was assessed with different in vitro methods. Survival analysis of wild type and mutant strains C. elegans under enhanced pro-oxidants exposure was investigated in vivo. Fast killing assay was also performed to study the extracts modulatory activity on host C. elegans survival under pathogen Pseudomonas aeruginosa infection.Results:  Forty compounds were detected in methanolic fraction of the extract with variable percentages. Both aqueous and methanol extract possessed remarkable, versatile free radical scavenging activity irrespective of the types of free radical generated. The in vivo experiments are in compliance, with observable increased survival ability percentage of C. elegans under intense exogenous oxidative stress and pathogen infection.Conclusion: Our findings enlightened the different compounds present with versatility of P. thyrsiflorus in tackling different free radicals generated both in vitro and in vivo that highly support for its candidature as a good antioxidant source. Our findings may justify the historical relevance of this plant in herbal remedies that could form the basis for inquiry of new active principles.Keywords: Free radicals, Oxidative stress, Caenorhabditis elegans, Phlogacanthus thyrsiflorus, Phytochemicals


Sign in / Sign up

Export Citation Format

Share Document