scholarly journals Geochemical, isotopic and U-Pb geochronological investigation of the Late Cretaceous Karaçayır carbonatite (Sivas, Turkey): Insights into mantle sources within a post-collisional tectonic setting

2021 ◽  
pp. 104650
Author(s):  
Okay Çimen ◽  
Haşim Ağrılı ◽  
Corinne Kuebler ◽  
Antonio Simonetti ◽  
Loretta Corcoran ◽  
...  
2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7776
Author(s):  
Andrzej Urbaniec ◽  
Anna Łaba-Biel ◽  
Anna Kwietniak ◽  
Imoleayo Fashagba

The Upper Cretaceous complex in the central part of the Carpathian Foreland (southern Poland) is relatively poorly recognized and described. Its formations can be classified as unconventional reservoir due to poor reservoir properties as well as a low recovery factor. The main aim of the article is to expand knowledge with conclusions resulting from the analysis of the latest seismic data with the application of seismic sequence stratigraphy. Moreover, the seismic attributes analysis was utilized. The depositional architecture recognition based on both chronostratigraphic horizons and Wheeler diagram interpretations was of paramount importance. A further result was the possibility of using the chronostratigraphic image for tectonostratigraphic interpretation. Two distinguished tectonostratigraphic units corresponding to megasequences were recognized. A tectonic setting of the analyzed interval is associated with global processes noticed by other authors in other parts of the central European Late Cretaceous basin, but also locally accompanied by evidence of small-scale tectonics. This study fills the gap on the issue of paleogeography in the Late Cretaceous sedimentary basin of the Carpathian Foreland. It presents the first results of detailed reconstruction of the basin paleogeography and an attempt to determine the impact of both eustatic and tectonic factors on sedimentation processes.


2016 ◽  
Vol 128 (9-10) ◽  
pp. 1481-1499 ◽  
Author(s):  
Ali Mohammadi ◽  
Jean-Pierre Burg ◽  
Wilfried Winkler ◽  
Jonas Ruh ◽  
Albrecht von Quadt

1994 ◽  
Vol 31 (5) ◽  
pp. 824-834 ◽  
Author(s):  
Mohsen Arvin ◽  
Paul T. Robinson

A Late Cretaceous ophiolite complex in the Baft area, southwest of Kerman, Iran, is characteristic of the Central Iranian Ophiolitic Mélange Belt, which wraps around the Lut Block. Despite the extensive tectonic disruption of the Baft complex, most ophiolitic lithologies are present and many original igneous contacts are preserved. A lack of cumulate gabbros within the sequence suggests that a large and continuous magma chamber did not exist beneath the Baft spreading axis. Geochemical data confirm the presence of two distinct compositional groups in the mafic lavas: (1) tholeiitic basalt and (2) transitional tholeiitic basalt. The tholeiitic lavas are similar to typical mid-ocean-ridge basalt compositions, whereas the transitional tholeiites are similar to intraplate basalts. The available data suggest that the Baft ophiolite complex formed in a small ocean basin, possibly at or near a ridge–transform intersection. Emplacement may have occurred as a result of conversion of the transform fault to a subduction zone during a change in relative plate motion. A ridge–transform setting is compatible with the intraplate character of some of the transitional basalts, which probably represent off-axis (seamount) magmatism, marked by the absence of cumulate gabbros and the presence of a serpentinite mélange cut by basaltic dykes. The ridge–transform model suggests formation of the ophiolite in a narrow ocean basin separating the Sanandaj-Sirjan microcontinent from the Central Iran Block in Late Cretaceous time.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 993
Author(s):  
Li Zhang ◽  
Changmin Zhang ◽  
Luxing Dou

The limited knowledge of Late Cretaceous terrestrial environments and their response to tectonic events in mid-latitudes can be addressed through continental basin deposits such as paleosols. Paleosols have been discovered in the Late Cretaceous Yaojia Formation in the southern Songlaio Basin and are recognized by evidence of soil structures controlled by pedogenesis. Sedimentary facies research on red paleosols was conducted on the Late Cretaceous Yaojia Formation in the outcrop of the southern Songliao Basin to interpret the depositional environments and tectonic significance of red paleosols during the greenhouse period. Mudflat, lake margin, and shallow lake depositional environments in a semi-arid climate are interpreted from the outcrops based on sedimentary descriptions and interpretation as well as geochemical and micromorphological analyses of paleosols in outcrops. We reconstructed the paleoenvironmental and paleoclimatic conditions through the paleosols in the mudflats and lake margin. The red paleosols in the mudflats and lake margin deposits formed in a stable landscape influenced by the tectonic uplift of the Songliao Basin, which is considered as new important evidence for tectonic uplift influenced by the collision of the Okhotomorsk Block with East Asia. The tectonic uplift process in East Asia is identified from the evolution of the depositional environments and drainage conditions inferred from different types of paleosols. Thus, the paleosols-bearing red bed deposits in outcrops provide an important contribution of the Late Cretaceous terrestrial paleoclimate and the tectonic setting research.


2021 ◽  
pp. M56-2021-10
Author(s):  
K. S. Panter ◽  
A. P. Martin

AbstractDistinct mantle compositions recorded in primitive West Antarctic magmatic rocks vary by tectonic setting and time. Deep asthenospheric mantle plume sources or shallow metasomatised mantle sources may operate either coincidently or independently to supply melts for magmatism. For example, contemporaneous subduction–plume dynamics produced the Ferrar-Karoo large igneous province; subduction-related melting followed by slab-rollback or melting of slab-hosted pyroxenite explains Antarctic Peninsula volcanism through time; Marie Byrd Land magmatism results from plume materials variably mixed with subduction modified mantle; while magmatism in Victoria Land and western Ross Sea is best explained by plate dynamics and melting of asthenospheric and metasomatised lithospheric sources and not by an upwelling plume. Element and isotopic ratios show a fundamental change between Marie Byrd Land and Victoria Land mantle domains. Specifically, Pb isotopes indicate that Victoria Land magmatism sources have a stronger focal zone (FOZO) mantle component while Marie Byrd Land magmatism possesses more of the HIMU mantle component. The chemical and isotopic heterogeneity of relatively unfractionated igneous rocks in West Antarctica reflects fundamental differences in mantle domains and melting conditions. This mantle variability coincides with changes in crustal structure and composition and has a geophysical signature that is manifest in seismic data and tomographic models.


1996 ◽  
Vol 9 (1-2) ◽  
pp. 111-120 ◽  
Author(s):  
Andrew C. Kerr ◽  
John Tarney ◽  
Giselle F. Marriner ◽  
Alvaro Nivia ◽  
Gerard Th. Klaver ◽  
...  

2004 ◽  
Vol 112 (5) ◽  
pp. 521-542 ◽  
Author(s):  
Chris M. Hall ◽  
Stephen E. Kesler ◽  
Norman Russell ◽  
Enrique Piñero ◽  
Roberto Sánchez C. ◽  
...  

2016 ◽  
Vol 70 ◽  
pp. 18-35 ◽  
Author(s):  
Fernando Velasco-Tapia ◽  
Margarita Martínez-Paco ◽  
Alexander Iriondo ◽  
Yam Zul Ernesto Ocampo-Díaz ◽  
Esther María Cruz-Gámez ◽  
...  

2004 ◽  
Vol 141 (5) ◽  
pp. 583-603 ◽  
Author(s):  
OSMAN PARLAK ◽  
VOLKER HÖCK ◽  
HÜSEYİN KOZLU ◽  
MICHEL DELALOYE

A number of Late Cretaceous ophiolitic bodies are located between the metamorphic massifs of the southeast Anatolian orogenic system. One of them, the Göksun ophiolite (northern Kahramanmaraş), which crops out in a tectonic window bounded by the Malatya metamorphic units on both the north and south, is located in the EW-trending nappe zone of the southeast Anatolian orogenic belt between Göksun and Afşin (northern Kahramanmaraş). It consists of ultramafic–mafic cumulates, isotropic gabbro, a sheeted dyke complex, plagiogranite, volcanic rocks and associated volcanosedimentary units. The ophiolitic rocks and the tectonically overlying Malatya–Keban metamorphic units were intruded by syn-collisional granitoids (∼ 85 Ma). The volcanic units are characterized by a wide spectrum of rocks ranging in composition from basalt to rhyolite. The sheeted dykes consist of diabase and microdiorite, whereas the isotropic gabbros consist of gabbro, diorite and quartzdiorite. The magmatic rocks in the Göksun ophiolite are part of a co-magmatic differentiated series of subalkaline tholeiites. Selective enrichment of some LIL elements (Rb, Ba, K, Sr and Th) and depletion of the HFS elements (Nb, Ta, Ti, Zr) relative to N-MORB are the main features of the upper crustal rocks. The presence of negative anomalies for Ta, Nb, Ti, the ratios of selected trace elements (Nb/Th, Th/Yb, Ta/Yb) and normalized REE patterns all are indicative of a subduction-related environment. All the geochemical evidence both from the volcanic rocks and the deeper levels (sheeted dykes and isotropic gabbro) show that the Göksun ophiolite formed during the mature stage of a suprasubduction zone (SSZ) tectonic setting in the southern branch of the Neotethyan ocean between the Malatya–Keban platform to the north and the Arabian platform to the south during Late Cretaceous times. Geological, geochronological and petrological data on the Göksun ophiolite and the Baskil magmatic arc suggest that there were two subduction zones, the first one dipping beneath the Malatya–Keban platform, generating the Baskil magmatic arc and the second one further south within the ocean basin, generating the Göksun ophiolite in a suprasubduction zone environment.


Sign in / Sign up

Export Citation Format

Share Document