R432 – Gene Expression of the Remodeling Rat Vocal Fold Wound

2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P189-P189
Author(s):  
Tsunehisa Ohno ◽  
Lesley C. French ◽  
Bernard Rousseau

Problem The authors investigated the expression of key extracellular matrix genes after vocal fold wounding in a rat model to better understand the reparative mechanisms of tissue repair during the remodeling phase of vocal fold injury. Methods Bilateral vocal fold wounds were created in 30 rats. Injured vocal fold specimens were harvested 1, 3, 7, 14, 28, and 56 days after wounding. 5 unwounded rats were used to establish baseline for polymerase chain reaction (PCR). The authors used real-time PCR to quantify messenger RNA expression of procollagen type I, III, interleukin-1 beta (IL-1 beta), decorin, and hyaluronan synthase (HAS) −1, −2, and −3. Analysis of variance was used to detect main effects for gene expression. Post-hoc tests were used to make comparisons between time points. Results Procollagen type I expression was decreased from baseline on post-injury day 1, 28, and 56. Procollagen type III was decreased on post-injury day 1 and 56, and increased from baseline on post-injury day 14. IL-1 beta expression was increased from baseline on post-injury day 1, 3, and 7. Decorin expression was decreased from baseline on post-injury day 1, 3, 7, and 56. HAS-1 expression was decreased from baseline at all post-injury time points. HAS-2 expression was increased from baseline on post-injury day 3, and decreased from baseline on post-injury day 14, 28, and 56. HAS-3 expression was decreased from baseline on post-injury day 1, 28, and 56. Conclusion Findings provide temporal changes in the expression of key extracellular matrix genes during a remodeling phase of vocal fold injury in a rat wound model. Significance Vocal fold wound models provide a means for investigating tissue reparative processes and molecular mechanisms controlling synthesis and degradation of the vocal fold extracellular matrix. Support Vanderbilt University Medical Center.

2005 ◽  
Vol 152 (2) ◽  
pp. 242-249 ◽  
Author(s):  
A.M. deGiorgio-Miller ◽  
L.J. Treharne ◽  
R.J. McAnulty ◽  
P.D. Coleridge Smith ◽  
G.J. Laurent ◽  
...  

2002 ◽  
Vol 98 (4) ◽  
pp. 582-589 ◽  
Author(s):  
Benny Vittrup Jensen ◽  
Julia Sidenius Johansen ◽  
Torben Skovsgaard ◽  
Jette Brandt ◽  
B�rge Teisner

Author(s):  
W Grant Stevens ◽  
Daniel J Gould ◽  
Linda D Pham ◽  
Joel N Jimenez Lozano

Abstract Background In addition to body contouring, there is anecdotal and supportive clinical evidence of reduced laxity and skin tightening after cryolipolysis. 10,11 Objectives The nature by which cryolipolysis triggers dermal changes has not been established. This study investigated fundamental mechanisms behind clinically observed dermal changes using molecular and immunohistochemistry methods. Methods This feasibility study involved n=7 subjects that received cryolipolysis treatment. Tissue samples were harvested from 3 days to 5 weeks after treatment. RNA-Sequencing examined differential gene expression of major collagens. RNA In Situ Hybridization (RNA-ISH) investigated the distribution of one of the gene markers for collagen Type I (COL1A1). Immunohistochemistry for Procollagen Type I, heat shock protein 47 (HSP47), transforming growth factor beta (TGF-β and Tropoelastin was performed and quantified. Results Gene expression analysis highlighted a gradual upregulation of collagen mRNA genes. RNA-ISH confirmed upregulation of COL1A1 mRNA and showed a homogenous distribution through the dermis. Immunohistochemistry showed increases in protein expression. Quantification revealed 3.62-fold increase of Procollagen Type I (p<0.0071) and 2.91-fold increase of TGF-β (p<0.041); 1.54-fold increase of HSP47 (p<0.007); and 1.57-fold increase of Tropoelastin (p<0.39) compared to untreated areas. Conclusions This study revealed significant induction of molecular and protein markers of Type I collagen, which supports neocollagenesis and may play an essential role in clinically relevant skin improvement. A dermal remodeling process driven by increased TGF-β and higher expression of HSP47 was observed. Overall, these data provide the first evidence of dermal remodeling and clarify the mechanism by which cryolipolysis may induce skin improvement.


2009 ◽  
Vol 118 (8) ◽  
pp. 559-564 ◽  
Author(s):  
Tsunehisa Ohno ◽  
Mi Jin Yoo ◽  
Erik R. Swanson ◽  
Shigeru Hirano ◽  
Robert H. Ossoff ◽  
...  

Objectives We investigated acute changes in extracellular matrix (ECM) gene expression and histologic changes in the deposition of collagen and hyaluronan (hyaluronic acid; HA) after basic fibroblast growth factor (bFGF) treatment of the aged rat vocal fold. Methods For the polymerase chain reaction (PCR) experiments, we divided ten 18-month-old Sprague-Dawley rats into two groups that received serial injections of sham (saline solution) or bFGF (2 ng/uL) and euthanized them 2 weeks after the initial injection to investigate acute changes in ECM gene expression. We treated a separate group of 5 animals unilaterally and sacrificed them 4 weeks after the initial injection to investigate histologic changes in the deposition of collagen and HA. Results Real-time PCR revealed significantly up-regulated HA synthase (HAS)-2, HAS-3, matrix metalloproteinase (MMP)-2, and procollagen type I gene expression in the bFGF treatment group as compared to the sham treatment group. Histologic staining revealed significantly increased deposition of HA in the bFGF-treated vocal fold as compared to the sham-treated vocal fold. No differences in ECM collagen levels were observed between treatment sides. Conclusions Basic fibroblast growth factor induced the up-regulation of HAS-2, HAS-3, MMP-2, and procollagen type I. Histologically, aged vocal folds treated with bFGF revealed increased deposition of HA as compared to sham-treated vocal folds.


2018 ◽  
Vol 314 (6) ◽  
pp. E597-E604 ◽  
Author(s):  
Claes Ohlsson ◽  
Karin H. Nilsson ◽  
Petra Henning ◽  
Jianyao Wu ◽  
Karin L. Gustafsson ◽  
...  

Therapeutic use of glucocorticoids (GCs) is a major cause of secondary osteoporosis, but the molecular mechanisms responsible for the deleterious effects of GCs in bone are only partially understood. WNT16 is a crucial physiological regulator of bone mass and fracture susceptibility, and we hypothesize that disturbed WNT16 activity might be involved in the deleterious effects of GC in bone. Twelve-week-old female Obl-Wnt16 mice (WNT16 expression driven by the rat procollagen type I α1 promoter) and wild-type (WT) littermates were treated with prednisolone (7.6 mg·kg−1·day−1) or vehicle for 4 wk. We first observed that GC treatment decreased the Wnt16 mRNA levels in bone of female mice (−56.4 ± 6.1% compared with vehicle, P < 0.001). We next evaluated if WNT16 overexpression protects against GC-induced bone loss. Dual-energy X-ray absorptiometry analyses revealed that GC treatment decreased total body bone mineral density in WT mice (−3.9 ± 1.2%, P = 0.028) but not in Obl-Wnt16 mice (+1.3 ± 1.4%, nonsignificant). Microcomputed tomography analyses showed that GC treatment decreased trabecular bone volume fraction (BV/TV) of the femur in WT mice ( P = 0.019) but not in Obl-Wnt16 mice. Serum levels of the bone formation marker procollagen type I N-terminal propeptide were substantially reduced by GC treatment in WT mice (−50.3 ± 7.0%, P = 0.008) but not in Obl-Wnt16 mice (−3.8 ± 21.2%, nonsignificant). However, the cortical bone thickness in femur was reduced by GC treatment in both WT mice and Obl-Wnt16 mice. In conclusion, GC treatment decreases Wnt16 mRNA levels in bone and WNT16 overexpression partly protects against GC-induced bone loss.


1995 ◽  
Vol 108 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Giuseppe Malizia ◽  
Elizabeth M. Brunt ◽  
Marion G. Peters ◽  
Aroldo Rizzo ◽  
Thomas J. Broekelmann ◽  
...  

2005 ◽  
Vol &NA; (431) ◽  
pp. 226-232 ◽  
Author(s):  
Sai-Chuen Fu ◽  
Yim-Ping Wong ◽  
Yau-Chuk Cheuk ◽  
Kwong-Man Lee ◽  
Kai-Ming Chan

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joel A. Tripp ◽  
Alejandro Berrio ◽  
Lisa A. McGraw ◽  
Mikhail V. Matz ◽  
Jamie K. Davis ◽  
...  

Abstract Background Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. Results We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. Conclusions These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5619
Author(s):  
Iris Ribitsch ◽  
Andrea Bileck ◽  
Alexander D. Aldoshin ◽  
Maciej M. Kańduła ◽  
Rupert L. Mayer ◽  
...  

Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document