Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference

Author(s):  
Zhezhe Wang ◽  
Gaoyang Zhao ◽  
Weihua Zhang ◽  
Zhuohong Feng ◽  
Lin Lin ◽  
...  
2011 ◽  
Vol 357 (3) ◽  
pp. 1223-1227 ◽  
Author(s):  
Zhezhe Wang ◽  
Gaoyang Zhao ◽  
Xiaolei Zhang ◽  
Liu Heguang ◽  
Nana Zhao

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Tianxu Jia ◽  
Xiangxian Wang ◽  
Yaqian Ren ◽  
Yingwen Su ◽  
Liping Zhang ◽  
...  

This paper presents a theoretical demonstration of diverse microstructure fabrication by changing the angle of incidence of a six-beam laser interference lithography system. Different combinations are formed with transverse electric (TE) and transverse magnetic (TM) polarizations and various microstructures are simulated by controlling the high-reflectivity mirror group to adjust the incidence angle. This study indicates that the incidence angle has a considerable influence on the shape and period of the lattice, thereby contributing to the fabrication of microstructures with different arrangements. These structures include donut, circle, D-type, rectangular, triangular, U-type, and honeycomb lattices. The six-beam laser interference lithography technique is expected to benefit microstructure fabrication because of its simple operation, large writing area, and low cost, thereby promoting the development of micro-optics.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7732-7737
Author(s):  
Fenying Wang ◽  
Dan Wang ◽  
Tingting Wang ◽  
Yu Jin ◽  
Baoping Ling ◽  
...  

Fluorescent molecularly imprinted polymer (FMIP) gains great attention in many fields due to their low cost, good biocompatibility and low toxicity. Here, a high-performance FMIP was prepared based on the autocatalytic silica sol–gel reaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Atiqur Rahman ◽  
Mohammad Tariqul Islam ◽  
Mandeep Singh Jit Singh ◽  
Md Samsuzzaman ◽  
Muhammad E. H. Chowdhury

AbstractIn this article, we propose SNG (single negative) metamaterial fabricated on Mg–Zn ferrite-based flexible microwave composites. Firstly, the flexible composites are synthesized by the sol-gel method having four different molecular compositions of MgxZn(1−x)Fe2O4, which are denoted as Mg20, Mg40, Mg60, and Mg80. The structural, morphological, and microwave properties of the synthesized flexible composites are analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and conventional dielectric assessment kit (DAK) to justify their possible application as dielectric substrate at microwave frequency regime. Thus the average grain size is found from 20 to 24 nm, and the dielectric constants are 6.01, 5.10, 4.19, and 3.28, as well as loss tangents, are 0.002, 0.004, 0.006, and 0.008 for the prepared Mg–Zn ferrites, i.e., Mg20, Mg40, Mg60, and Mg80 respectively. Besides, the prepared low-cost Mg–Zn ferrite composites exhibit high flexibility and lightweight, which makes them a potential candidate as a metamaterial substrate. Furthermore, a single negative (SNG) metamaterial unit cell is fabricated on the prepared, flexible microwave composites, and their essential electromagnetic behaviors are observed. Very good effective medium ratios (EMR) vales are obtained from 14.65 to 18.47, which ensure the compactness of the fabricated prototypes with a physical dimension of 8 × 6.5 mm2. Also, the proposed materials have shown better performances comparing with conventional FR4 and RO4533 materials, and they have covered S-, C-, X-, Ku-, and K-band of microwave frequency region. Thus, the prepared, flexible SNG metamaterials on MgxZn(1−x)Fe2O4 composites are suitable for microwave and flexible technologies.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.


2021 ◽  
pp. 2150459
Author(s):  
Xiangxian Wang ◽  
Tianxu Jia ◽  
Jiankai Zhu ◽  
Yingwen Su ◽  
Liping Zhang ◽  
...  

In this study, we systematically and comprehensively investigated the influence of polarization angle on the fabrication of micro-structures by multi-beam laser interference lithography. Using theoretical analysis and simulation, we studied the effect of different polarization combinations, i.e. transverse electric (TE) and transverse magnetic (TM) polarization combinations, on the characteristics of the micro-structures fabricated by three-, four-, and six-beam laser interference lithography. We successfully obtained micro-structures with different periodic patterns such as honeycomb dots, quasi-elliptic dots, different square dots, and quasi-triangular dots. The simulation results illustrate that polarization affects the formation of interference patterns, pattern contrasts, and periods. The methods discussed herein are simple, low cost, and allow excellent control over structural parameters, and hence are useful for the micro-structure manufacturing industry.


2019 ◽  
Vol 36 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Chee Yong Fong ◽  
Sha Shiong Ng ◽  
NurFahana Mohd Amin ◽  
Fong Kwong Yam ◽  
Zainuriah Hassan

Purpose This study aims to explore the applicability of the sol-gel-derived GaN thin films for UV photodetection. Design/methodology/approach GaN-based ultraviolet (UV) photodetector with Pt Schottky contacts was fabricated and its applicability was investigated. The current-voltage (I-V) characteristics of the GaN-based UV photodetector under the dark current and photocurrent were measured. Findings The ideality factors of GaN-based UV photodetector under dark current and photocurrent were 6.93 and 5.62, respectively. While the Schottky barrier heights (SBH) for GaN-based UV photodetector under dark current and photocurrent were 0.35 eV and 0.34 eV, respectively. The contrast ratio and responsivity of this UV photodetector measured at 5 V were found to be 1.36 and 1.68 μA/W, respectively. The photoresponse as a function of time was measured by switching the UV light on and off continuously at different forward biases of 1, 3 and 6 V. The results showed that the fabricated UV photodetector has reasonable stability and repeatability. Originality/value This work demonstrated that GaN-based UV photodetector can be fabricated by using the GaN thin film grown by low-cost and simple sol-gel spin coating method.


2016 ◽  
Vol 881 ◽  
pp. 30-34
Author(s):  
Agatha Matos Misso ◽  
Hermi F. Brito ◽  
Lucas C.V. Rodrigues ◽  
Vinicius R. Morais ◽  
Chieko Yamagata

Rare earth silicate based MnMgSi2O5+n (M = Ca, Sr or Ba and n=1-2) phosphors, have attracted interest of researchers due to their high efficiency as a host, excellent thermal and chemical stability and high brightness adding to their low cost. These phosphors showed great potential in various applications such as fluorescent lamps, white light emitting diodes, and display components. High temperature solid-state reactions are usually employed to synthesize those compounds. This paper proposes an alternative method of obtaining nanophosphor host based on Eu-doped CaMgSi2O6 (CMS:Eu), persistent luminescence phosphor. Sol gel technique combined to a modified molten salt method was used. The resulted powder was calcined for 3h under an atmosphere of 5% H2 and 95% Ar2. Phase identification by XRD and the measurements of photoluminescence (PL) and photoluminescence excitation (PLE) were performed. Single phased CMS:Eu with persistent luminescence characteristics was prepared.


2008 ◽  
Author(s):  
Fufei Pang ◽  
Ping Xu ◽  
Min Wang ◽  
Xianglong Zeng ◽  
Zhenyi Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document