scholarly journals Oxidative stress induced by hydrogen peroxide promotes glycolysis by activating CaMKK/LKB1/AMPK pathway in broiler breast muscle

2021 ◽  
pp. 101681
Author(s):  
Zuodong Chen ◽  
Tong Xing ◽  
Jiaolong Li ◽  
Lin Zhang ◽  
Yun Jiang ◽  
...  
Author(s):  
Tong Xing ◽  
Xiangxing Chen ◽  
Jiaolong Li ◽  
Lin Zhang ◽  
Feng Gao

Abstract Oxidative stress seriously affects poultry production. Nutritional manipulations have been effectively used to alleviate the negative effects caused by oxidative stress. This study investigated the attenuating effects and potential mechanisms of dietary taurine on growth performance and meat quality of broiler chickens challenged with hydrogen peroxide (H2O2). Briefly, a total of 192 male Arbor Acres broilers (28-day-old) were randomly categorized into 3 groups: non-injection of birds on basal diets (control), 10.0% H2O2-injection of birds on basal diets (H2O2), and 10.0% H2O2-injection of birds on basal diets supplemented with 5 g/kg taurine (H2O2+taurine). Each group consisted of 8 cages of 8 birds each. Results indicated that H2O2 administration significantly reduced growth performance and impaired breast meat quality by decreasing ultimate pH and increasing shear force value (P < 0.05). Dietary taurine improved the body weight gain and feed intake, and decreased feed/gain ratio of H2O2-challenged broilers. Meanwhile, oxidative stress induced by intraperitoneal injection of H2O2 suppressed the nuclear factor-κB (NF-κB) signaling and initiated autophagy and apoptosis. Compared with the H2O2 group, taurine supplementation restored the redox status in breast muscle by decreasing levels of reactive oxygen species and contents of oxidative products and increasing antioxidant capacity (P < 0.05). Moreover, upregulated mRNA expression of NF-κB signaling-related genes including p50 and Bcl-2, as well as enhanced protein expression of NF-κB were observed in the H2O2+taurine group (P < 0.05). Additionally, dietary taurine decreased expression of caspase family, beclin-1 and LC3-II (P < 0.05), thereby rescuing autophagy and apoptosis in breast muscle induced by H2O2. Collectively, dietary supplementation with taurine effectively improves growth performance and breast meat quality of broilers challenged with H2O2, possibly by protecting against oxidative injury and modulating cell death signaling.


2019 ◽  
Vol 20 (11) ◽  
pp. 2680 ◽  
Author(s):  
Xia Zhao ◽  
Jiankang Fang ◽  
Shuai Li ◽  
Uma Gaur ◽  
Xingan Xing ◽  
...  

Oxidative stress is believed to be one of the main causes of neurodegenerative diseases such as Alzheimer’s disease (AD). The pathogenesis of AD is still not elucidated clearly but oxidative stress is one of the key hypotheses. Here, we found that artemisinin, an anti-malarial Chinese medicine, possesses neuroprotective effects. However, the antioxidative effects of artemisinin remain to be explored. In this study, we found that artemisinin rescued SH-SY5Y and hippocampal neuronal cells from hydrogen peroxide (H2O2)-induced cell death at clinically relevant doses in a concentration-dependent manner. Further studies showed that artemisinin significantly restored the nuclear morphology, improved the abnormal changes in intracellular reactive oxygen species (ROS), reduced the mitochondrial membrane potential, and caspase-3 activation, thereby attenuating apoptosis. Artemisinin also stimulated the phosphorylation of the adenosine monophosphate -activated protein kinase (AMPK) pathway in SH-SY5Y cells in a time- and concentration-dependent manner. Inhibition of the AMPK pathway attenuated the protective effect of artemisinin. These data put together suggested that artemisinin has the potential to protect neuronal cells. Similar results were obtained in primary cultured hippocampal neurons. Cumulatively, these results indicated that artemisinin protected neuronal cells from oxidative damage, at least in part through the activation of AMPK. Our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.


Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


2004 ◽  
Vol 9 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Chi-Sung Chun ◽  
Ji-Hyun Kim ◽  
Hyun-Ae Lim ◽  
Ho-Yong Sohn ◽  
Kun-Ho Son ◽  
...  

2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 557
Author(s):  
Stephanie D. Burr ◽  
James A. Stewart

Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.


Author(s):  
Erik F. J. Weenink ◽  
Hans C. P. Matthijs ◽  
J. Merijn Schuurmans ◽  
Tim Piel ◽  
Maria J. Herk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document