The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion

Author(s):  
Agnieszka Korus ◽  
Giulia Ravenni ◽  
Krzysztof Loska ◽  
Irena Korus ◽  
Abby Samson ◽  
...  
1992 ◽  
Vol 57 (11) ◽  
pp. 2241-2247 ◽  
Author(s):  
Tomáš Hochmann ◽  
Karel Setínek

Solid acid catalysts with acid strength of -14.52 < H0 < -8.2 were prepared by sulfate treatment of the samples of boehmite calcined at 105-800 °C. Two preparation methods were used: impregnation of the calcined boehmite with 3.5 M H2SO4 or mixing of the boehmite samples with anhydrous aluminum sulfate, in both cases followed by calcination in nitrogen at 650 °C. The catalysts were characterized by measurements of surface area, adsorption of pyridine and benzene, acid strength measurements by the indicator method and by catalytic activity tests in the isomerization of cyclohexene, p-xylene and n-hexane. Properties of the catalysts prepared by both methods were comparable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoottapong Klinthongchai ◽  
Seeroong Prichanont ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

AbstractMesocellular foam carbon (MCF-C) is one the captivating materials for using in gas phase dehydrogenation of ethanol. Extraordinary, enlarge pore size, high surface area, high acidity, and spherical shape with interconnected pore for high diffusion. In contrary, the occurrence of the coke is a majority causes for inhibiting the active sites on catalyst surface. Thus, this study aims to investigate the occurrence of the coke to optimize the higher catalytic activity, and also to avoid the coke formation. The MCF-C was synthesized and investigated using various techniques. MCF-C was spent in gas-phase dehydrogenation of ethanol under mild conditions. The deactivation of catalyst was investigated toward different conditions. Effects of reaction condition including different reaction temperatures of 300, 350, and 400 °C on the deactivation behaviors were determined. The results indicated that the operating temperature at 400 °C significantly retained the lowest change of ethanol conversion, which favored in the higher temperature. After running reaction, the physical properties as pore size, surface area, and pore volume of spent catalysts were decreased owing to the coke formation, which possibly blocked the pore that directly affected to the difficult diffusion of reactant and caused to be lower in catalytic activity. Furthermore, a slight decrease in either acidity or basicity was observed owing to consumption of reactant at surface of catalyst or chemical change on surface caused by coke formation. Therefore, it can remarkably choose the suitable operating temperature to avoid deactivation of catalyst, and then optimize the ethanol conversion or yield of acetaldehyde.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Diana García-Pérez ◽  
Maria Consuelo Alvarez-Galvan ◽  
Jose M. Campos-Martin ◽  
Jose L. G. Fierro

Catalysts based on zirconia- and alumina-supported tungsten oxides (15 wt % W) with a small loading of platinum (0.3 wt % Pt) were selected to study the influence of the reduction temperature and the nature of the support on the hydroisomerization of n-dodecane. The reduction temperature has a major influence on metal dispersion, which impacts the catalytic activity. In addition, alumina and zirconia supports show different catalytic properties (mainly acid site strength and surface area), which play an important role in the conversion. The NH3-TPD profiles indicate that the acidity in alumina-based catalysts is clearly higher than that in their zirconia counterparts; this acidity can be attributed to a stronger interaction of the WOx species with alumina. The PtW/Al catalyst was found to exhibit the best catalytic performance for the hydroisomerization of n-dodecane based on its higher acidity, which was ascribed to its larger surface area relative to that of its zirconia counterparts. The selectivity for different hydrocarbons (C7–10, C11 and i-C12) was very similar for all the catalysts studied, with branched C12 hydrocarbons being the main products obtained (~80%). The temperature of 350 °C was clearly the best reduction temperature for all the catalysts studied in a trickled-bed-mode reactor.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1875
Author(s):  
Prashanth Reddy Buchireddy ◽  
Devin Peck ◽  
Mark Zappi ◽  
Ray Mark Bricka

Amongst the issues associated with the commercialization of biomass gasification, the presence of tars has been one of the most difficult aspects to address. Tars are an impurity generated from the gasifier and upon their condensation cause problems in downstream equipment including plugging, blockages, corrosion, and major catalyst deactivation. These problems lead to losses of efficiency as well as potential maintenance issues resulting from damaged processing units. Therefore, the removal of tars is necessary in order for the effective operation of a biomass gasification facility for the production of high-value fuel gas. The catalytic activity of montmorillonite and montmorillonite-supported nickel as tar removal catalysts will be investigated in this study. Ni-montmorillonite catalyst was prepared, characterized, and tested in a laboratory-scale reactor for its efficiency in reforming tars using naphthalene as a tar model compound. Efficacy of montmorillonite-supported nickel catalyst was tested as a function of nickel content, reaction temperature, steam-to-carbon ratio, and naphthalene loading. The results demonstrate that montmorillonite is catalytically active in removing naphthalene. Ni-montmorillonite had high activity towards naphthalene removal via steam reforming, with removal efficiencies greater than 99%. The activation energy was calculated for Ni-montmorillonite assuming first-order kinetics and was found to be 84.5 kJ/mole in accordance with the literature. Long-term activity tests were also conducted and showed that the catalyst was active with naphthalene removal efficiencies greater than 95% maintained over a 97-h test period. A little loss of activity was observed with a removal decrease from 97% to 95%. To investigate the decrease in catalytic activity, characterization of fresh and used catalyst samples was performed using thermogravimetric analysis, transmission electron microscopy, X-ray diffraction, and surface area analysis. The loss in activity was attributed to a decrease in catalyst surface area caused by nickel sintering and coke formation.


2013 ◽  
Vol 297 ◽  
pp. 17-26 ◽  
Author(s):  
D.C. Boffito ◽  
V. Crocellà ◽  
C. Pirola ◽  
B. Neppolian ◽  
G. Cerrato ◽  
...  

2014 ◽  
Vol 50 (82) ◽  
pp. 12356-12359 ◽  
Author(s):  
Baocang Liu ◽  
Yuefang Niu ◽  
Yan Li ◽  
Fan Yang ◽  
Jiamin Guo ◽  
...  

A novel mesoporous “shell-in-shell” structured nanoreactor (@Pd/meso-TiO2/Pd@meso-SiO2) shows superior catalytic activity, stability, and selectivity for Suzuki–Miyaura coupling reaction.


1995 ◽  
Vol 24 (8) ◽  
pp. 699-700 ◽  
Author(s):  
Tsutomu Suzuki ◽  
Yuzo Imizu ◽  
Yoshinobu Satoh ◽  
Sunao Ozaki

Sign in / Sign up

Export Citation Format

Share Document