scholarly journals Morphology, Photosynthetic Traits, and Nutritional Quality of Lettuce Plants as Affected by Green Light Substituting Proportion of Blue and Red Light

2021 ◽  
Vol 12 ◽  
Author(s):  
Lie Li ◽  
Yu-xin Tong ◽  
Jun-ling Lu ◽  
Yang-mei Li ◽  
Xin Liu ◽  
...  

Green light, as part of the photosynthetically active radiation, has been proven to have high photosynthetic efficiency once absorbed by plant leaves and can regulate plant physiological activities. However, few studies have investigated the appropriate and efficient way of using the green light for plant production. Thus, the objective of this study was to investigate a moderate amount of green light, partially replacing red and blue light, for plant growth and development. In this experiment, four treatments were set up by adjusting the relative amount of green light as 0 (RB), 30 (G30), 60 (G60), and 90 (G90) μmol m−2 s−1, respectively, with a total photosynthetic photon flux density of 200 μmol m−2 s−1 and a fixed red-to-blue ratio of 4:1. Lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth and morphology, stomatal characteristics, light absorptance and transmittance, photosynthetic characteristics, and nutritional quality were investigated. The results showed that: (1) shoot dry weight increased by 16.3 and 24.5% and leaf area increased by 11.9 and 16.2% under G30 and G60, respectively, compared with those under RB. Plant stem length increased linearly with increasing green-to-blue light ratio; (2) light transmittance of lettuce leaf under treatments employing green light was higher than that under RB, especially in the green region; (3) stomatal density increased, whereas stomatal aperture area decreased with the increase in the relative amount of green light; and (4) carbohydrate accumulation increased under G60 and G90. Soluble sugar contents under G60 and G90 increased by 39.4 and 19.4%, respectively. Nitrate contents under G30, G60, and G90 decreased by 26.2, 40.3, and 43.4%, respectively. The above results indicated that 15–30% green light replacing red and blue light effectively increased the yield and nutritional quality of lettuce plants.

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


2020 ◽  
Author(s):  
Xue Zhang ◽  
Mehdi bisbis ◽  
Ep Heuvelink ◽  
Weijie Jiang ◽  
Leo F. M Marcelis

Abstract Although green light is often neglected it can have several effects on plant growth and development. Green light is probably sensed by cryptochromes (crys), one of the blue light photoreceptor families. The aim of this study is to investigate the possible interaction between green and blue light and the involvement of crys in the green light response of plant photomorphogenesis. We hypothesize that green light effects on morphology only occur when crys are activated by the presence of blue light. Wild-type Moneymaker (MM), cry1a mutant (cry1a) and two CRY2 overexpressing transgenic lines (CRY2-OX3 and CRY2-OX8) of tomato (Solanum lycopersicum) were grown in a climate chamber without or with green light (30 µmol m− 2 s− 1) on backgrounds of sole red, sole blue and red/blue mixture, with all treatments having the same photosynthetic photon flux density of 150 µmol m− 2 s− 1. Green light showed no significant effect on biomass accumulation, nor on leaf photosynthesis and leaf characteristics such as leaf area, specific leaf area, and chlorophyll content. However, in all genotypes, green light significantly decreased stem length on a sole blue background, whereas green light did not affect stem length on sole red and red/blue mixture background. MM, cry1a and CRY2-OX3/8 plants all exhibited similar responses of stem elongation to green light, indicating that cry1a, and probably cry2, is not involved in this green light effect. We conclude that partially replacing blue light by green light reduces elongation and that this is independent of cry1a.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao-li Chen ◽  
You-li Li ◽  
Li-chun Wang ◽  
Wen-zhong Guo

AbstractSince red (R) and blue (B) LED light has different quantum efficiency and photoelectric conversion efficiency, mixed RB with different proportions of R and B results in varied energy consumption. In order to improve the energy use efficiency of the closed-type plant production systems, the effects of R and B proportions on the electric use efficiency (EUE), light use efficiency (LUE) as well as the quality of butter leaf lettuce were evaluated in this study. Lettuce seedlings were cultivated in a plant factory with artificial lighting (PFAL) and subjected to eleven combinations of R and B (100%R, 90%R, 80%R, 70%R, 60%R, 50%R, 40%R, 30%R, 20%R, 10%R, 0%R; the rest of the photons in each treatment were B) with the same total photosynthetic photon flux density (PPFD) and photoperiod (200 ± 3 μmol·m−2·s−1, 16 h) for 35 days. The results showed that palpable petiole distortion appeared when R proportion was more than 70% and the distortion was aggravated with the increase of R proportion. The highest EUE and LUE were both detected in lettuce under 90%R treatment, which were respectively 3.64% and 1.20%. The least number of photons and the least electricity amount required to produce 1 g dry weight of lettuce was respectively 2.92 mol and 1.67 MJ, which were both detected in lettuce treated with 90%R. The sucrose content in lettuce treated with more than 50%R was significantly higher than those treated with less than 50%R (50%R included). Lettuce treated with 80%R possessed the highest soluble sugar content as well as the lowest crude fiber and nitrate content (not significantly different with the minimum values). R proportion exceeding 50% in mixed RB light was beneficial to the accumulation of hexose and sucrose, as well as the decomposition of nitrate in lettuce. The vitamin C content in lettuce treated with 100%R was significantly higher than that in lettuce under other treatments in the study. On the whole, the study indicated that the proportions of R and B affected the energy use efficiency and quality of lettuce in closed plant factory, however the responses of plants to the proportions of R and B varied according to different indexes. Thus, some indexes of top priority should be determined before choosing the optimal proportions of R and B.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1157-1163 ◽  
Author(s):  
Kui Lin ◽  
Zhi Huang ◽  
Yong Xu

The effects of different light intensities and qualities on the biomass, physiological parameters, and biochemical contents of hydroponically grown lettuce (Lactuca sativa L.) were evaluated, with the aim of obtaining better quality and higher yield, as well as saving energy in lettuce cultivation. Three different light qualities, provided by red (R), green (G), and blue (B) light-emitting diodes (LEDs), were used to produce six different combinations of illumination: A1: R:G:B = 7:0:3 [photosynthetic photon flux density (PPFD) = 150 μmol·m−2·s−1]; A2: R:G:B = 6:2:2 (150 μmol·m−2·s−1); A3: R:G:B = 7:0:3 (120 μmol·m−2·s−1); B1: R:G:B = 3:0:7 (150 μmol·m−2·s−1); B2: R:G:B = 2:2:6 (150 μmol·m−2·s−1); and B3: R:G:B = 3:0:7 (120 μmol·m−2·s−1), and the fluorescent lamp (FL) at 150 μmol·m−2·s−1 was used as the control (CK). In most cases, treatment A2 resulted in higher biomass attributes, whereas higher physiological parameters were observed in treatment B2. However, a greater shoot dry weight (SDW) was observed in treatment A1. No significant difference was detected in chlorophyll [Chl (a + b)] and carotenoid (CAR) contents among the different treatments. Soluble sugar content was found the highest in treatment A1, although it was not significant compared with that observed in treatment A2. Soluble protein content was higher in treatments with a higher component of blue light. Vitamin C content was found the highest in treatment B3 and the lowest in treatment A1, whereas malondialdehyde (MDA) content was the highest in CK and the lowest in treatments B1 and B2. These results indicated that appropriate ratio of red to blue light can effectively promote the accumulation of biochemical compounds in lettuce and that replacement of a certain portion of red light, blue light, or both with green light was more effective in promoting plant growth and quality.


2020 ◽  
Vol 71 (19) ◽  
pp. 5764-5770
Author(s):  
Martin W Battle ◽  
Franco Vegliani ◽  
Matthew A Jones

Abstract The development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants’ perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct ‘green’ and ‘yellow’ light-induced responses. This distinction will enable clearer interpretation of plants’ behaviour in response to green light as we seek to optimize plant growth and nutritional quality in horticultural contexts.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 613-620 ◽  
Author(s):  
Lie Li ◽  
Yu-xin Tong ◽  
Jun-ling Lu ◽  
Yang-mei Li ◽  
Qi-chang Yang

Light, as the energy and signal sources for plant growth and development, is one of the most important environment factors in recently developed plant factories with artificial light (PFALs). To find the optimal combination of light wavelengths for lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth in a PFAL, four treatments, each using red (R; 662 nm) and blue light (B; 447 nm) with a ratio of 4:1 and photon flux density (PFD) of 150 μmol·m−2·s−1, and mixing, respectively, with 50 μmol·m−2·s−1 of green light (G; 525 nm; RBG), yellow light (Y; 592 nm; RBY), orange light (O; 605 nm; RBO) and far-red light (FR; 742 nm; RBFR), were set up during this experiment. A combination of R and B with a ratio of 4:1 and PFD of 200 μmol·m−2·s−1 was set as the control (RB). The responses of lettuce growth, morphology, anatomical structure of the lettuce leaf, photosynthetic performance, lettuce nutritional quality, and energy use efficiency were investigated. The results showed that RBG, RBO, and RBFR increased the shoot fresh weight of lettuce by 20.5%, 19.6%, and 40.4%, and they increased the shoot dry weight of lettuce by 24.2%, 13.4%, and 45.2%, respectively, compared with those under RB. The Pn under RBY was significantly lower than that under RB, although no significant differences in chlorophyll or carotenoid content were found between RBY and RB. RBG increased the lettuce leaf area, the thickness of the leaf palisade tissue, Pn, and light use efficiency compared with those under RB. Plants grown under RBO showed better photosynthetic capacity, such as higher Pn, ΦPSII, and other photosynthetic parameters. RBFR caused an increase in lettuce leaf area and energy use efficiency, but a decrease in leaf thickness and Pn of the single leaf. Moreover, tipburn injury was observed under RBFR. Therefore, these results demonstrate that RBG and RBO can be considered optimal combinations of light wavelengths for lettuce growth in a PFAL in this experiment, although plant growth can also be improved by using RBFR.


2017 ◽  
Vol 69 (1) ◽  
pp. 93-101
Author(s):  
Zexiong Chen ◽  
Juan Lou

Light is the source of energy for plants. Light wavelengths, densities and irradiation periods act as signals directing morphological and physiological characteristics during plant growth and development. To evaluate the effects of light wavelengths on tomato growth and development, Solanum lycopersicum (cv. micro-Tom) seedlings were exposed to different light-quality environments, including white light and red light supplemented with blue light (at ratios of 3:1 and 8;1, respectively). Tomatoes grown under red light supplemented with blue light displayed significantly shorter stem length, a higher number of flower buds and rate of fruit set, but an extremely late flowering compared to white-light-grown plants. To illustrate the mechanism underlying the inhibition of stem growth and floral transition mediated by red/blue light, 10 trehalose-6-phosphate synthase (TPS) genes were identified in tomato, and bioinformatics analysis was performed. qRT-PCR analysis showed that SlTPSs were expressed widely throughout plant development and SlTPS1 was expressed at extremely high levels in stems and buds. Further analysis of several flowering-associated genes and microRNAs showed that the expressions of SlTPS1, SlFT and miR172 were significantly downregulated in tomato grown under red and blue light compared with those grown under white light, whereas miR156 transcript levels were increased. A regulatory model underlying vegetative growth and floral transition regulated by light qualities is presented. Our data provide evidence that light quality strongly affects plant growth and phase transition, most likely via the TPS1-T6P signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Marc W. van Iersel

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (An) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf An of “Green Tower” lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m–2⋅s–1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (Vc,max) at low (200 μmol⋅m–2⋅s–1) and high PPFD (1,000 μmol⋅m–2⋅s–1) were estimated from photosynthetic CO2 response curves. Both QYm,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QYm,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QYm,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QYinc [gross CO2 assimilation (Ag)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. Vc,max may not limit photosynthesis at a PPFD of 200 μmol m–2 s–1 and was largely unaffected by light spectrum at 1,000 μmol⋅m–2⋅s–1. Ag and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QYinc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.


2014 ◽  
Vol 60 (No. 5) ◽  
pp. 216-220
Author(s):  
Sun YD ◽  
Luo WR ◽  
Liu HC

Nitrogen plays a vital role in the growth, development and nutritional quality of Chinese chive, which is an important leafy vegetable. The effects of improved Hoagland nutrient solutions on the nutritional quality and physiological characteristics of three Chinese chive cultivars (Saisong, Pingjiu No. 4 and Pingjiu No. 8) were investigated by modulating the ratio of nitrite nitrogen (NO<sub>3</sub><sup>&ndash;</sup>-N) to ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N). Improved Hoagland nutrient solutions with NO<sub>3</sub><sup>&ndash;</sup>-N to NH<sub>4</sub><sup>+</sup>-N ratios of 50:50 and 75:25 could effectively promote the accumulation of soluble protein, soluble sugar, vitamin C and proline; decrease the malondialdehyde content; and induce the superoxide dismutase and peroxidase activities of the three cultivars. It is strongly suggested that NO<sub>3</sub><sup>&ndash;</sup>-N to NH<sub>4</sub><sup>+</sup>-N ratios of 50:50 and 75:25 improve nutritional quality and promote growth and are thus suitable for Chinese chive growth under hydroponic culture.


Sign in / Sign up

Export Citation Format

Share Document