Strain engineering of ultra-thin silicon-on-insulator structures using through-buried-oxide ion implantation and crystallization

2013 ◽  
Vol 83 ◽  
pp. 37-41 ◽  
Author(s):  
Yinjie Ding ◽  
Ran Cheng ◽  
Qian Zhou ◽  
Anyan Du ◽  
Nicolas Daval ◽  
...  
Author(s):  
N. David Theodore ◽  
Juergen Foerstner ◽  
Peter Fejes

As semiconductor device dimensions shrink and packing-densities rise, issues of parasitic capacitance and circuit speed become increasingly important. The use of thin-film silicon-on-insulator (TFSOI) substrates for device fabrication is being explored in order to increase switching speeds. One version of TFSOI being explored for device fabrication is SIMOX (Silicon-separation by Implanted OXygen).A buried oxide layer is created by highdose oxygen implantation into silicon wafers followed by annealing to cause coalescence of oxide regions into a continuous layer. A thin silicon layer remains above the buried oxide (~220 nm Si after additional thinning). Device structures can now be fabricated upon this thin silicon layer.Current fabrication of metal-oxidesemiconductor field-effect transistors (MOSFETs) requires formation of a polysilicon/oxide gate between source and drain regions. Contact to the source/drain and gate regions is typically made by use of TiSi2 layers followedby Al(Cu) metal lines. TiSi2 has a relatively low contact resistance and reduces the series resistance of both source/drain as well as gate regions


1997 ◽  
Vol 469 ◽  
Author(s):  
Guénolé C.M. Silvestre

ABSTRACTSilicon-On-Insulator (SOI) materials have emerged as a very promising technology for the fabrication of high performance integrated circuits since they offer significant improvement to device performance. Thin silicon layers of good crystalline quality are now widely available on buried oxide layers of various thicknesses with good insulating properties. However, the SOI structure is quite different from that of bulk silicon. This paper will discuss a study of point-defect diffusion and recombination in thin silicon layers during high temperature annealing treatment through the investigation of stacking-fault growth kinetics. The use of capping layers such as nitride, thin thermal oxide and thick deposited oxide outlines the diffusion mechanisms of interstitials in the SOI structure. It also shows that the buried oxide layer is a very good barrier to the diffusion of point defects and that excess silicon interstitials may be reincorporated at the top interface with the thermal oxide through the formation of SiO species. Finally, from the experimental values of the activation energies for the growth and the shrinkage of stacking-faults, the energy of interstitial creation is evaluated to be 2.6 eV, the energy for interstitial migration to be 1.8 eV and the energy of interstitial generation during oxidation to be 0.2 eV.


1989 ◽  
Vol 4 (1) ◽  
pp. 167-176 ◽  
Author(s):  
S. R. Wilson ◽  
M. E. Burnham ◽  
M. Kottke ◽  
R. P. Lorigan ◽  
S. J. Krause ◽  
...  

Silicon-on-insulator films were formed by ion implantation of oxygen and were treated with various annealing cycles at peak temperatures of 1150 °C, 1200 °C, and 1250 °C in a conventional diffusion furnace. The objective of this study was to examine the structural effects on samples with similar oxygen diffusion lengths (from 17 to 33 μm) achieved by annealing at different times and temperatures. The oxygen and silicon distributions, as well as the residual damage and precipitate size and distribution, were measured by Auger electron microscopy, Rutherford backscattering spectroscopy, and transmission electron microscopy. In agreement with previous findings, higher temperatures produced a larger and less defective, “precipitate-free” superficial Si region. The buried oxide layer thickened from 0.33 μm to a maximum of 0.43 μm as some precipitates were incorporated into the buried oxide while others adjacent to the buried oxide grew in size (up to 47 nm) and decreased in relative number. A new result of this systematic study of annealing conditions was that the peak temperature has a greater effect on the morphology and crystal quality of the superficial Si structure than does time at temperature. Structural changes for longer anneals at 1150 °C are not equivalent to shorter anneals at 1250 °C even though the diffusion length of oxygen for these treatments is the same.


2006 ◽  
Vol 15 (4) ◽  
pp. 792-797 ◽  
Author(s):  
Zhang En-Xia ◽  
Qian Cong ◽  
Zhang Zheng-Xuan ◽  
Lin Cheng-Lu ◽  
Wang Xi ◽  
...  

2003 ◽  
Vol 367 (1-2) ◽  
pp. 44-48 ◽  
Author(s):  
Xiang Wang ◽  
Jing Chen ◽  
Yemin Dong ◽  
Meng Chen ◽  
Xi Wang

1996 ◽  
Vol 143 (8) ◽  
pp. L166-L168 ◽  
Author(s):  
Tohru Hara ◽  
Takayuki Onda ◽  
Yasuo Kakizaki ◽  
Sotaro Oshima ◽  
Taira Kitamura ◽  
...  

Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document