Soil–water relationships in the upper soil layer in a Mediterranean Palexerult as affected by no-tillage under excess water conditions – Influence on crop yield

2015 ◽  
Vol 146 ◽  
pp. 303-312 ◽  
Author(s):  
Clara Gómez-Paccard ◽  
Chiquinquirá Hontoria ◽  
Ignacio Mariscal-Sancho ◽  
Juana Pérez ◽  
Paloma León ◽  
...  
2013 ◽  
Vol 20 (3) ◽  
pp. 507-517
Author(s):  
Hao Chen

Abstract In semi-humid Loess Plateau of northern China, water is the limiting factor for rain-fed crop yields. In this region, long-term traditional ploughing with straw removal has resulted in poor soil structure, water conservation and crop yield. Controlled traffic, combined with no-till and straw cover has been proposed to improve soil water conservation and crop yield. From 1999 to 2007, a field experiment on winter wheat was conducted in the dryland area of Loess Plateau of northern China, to investigate the effects of traffic and tillage on soil water conservation and crop yield. The field experiment was conducted using two controlled traffic treatments, no tillage with residue cover and no compaction (NTCN), shallow tillage with residue cover and no compaction (STCN) and one conventional tillage treatment (CK). Results showed that controlled traffic system reduced soil compaction in the top soil layer, increased soil water infiltration. The benefit on soil water infiltration translated into more soil conservation (16.1%) in 0-100 cm soil layer in fellow period, and achieved higher soil water availability at planting (16.5%), with less yearly variation. Consequently, controlled traffic system increased wheat yield by 12.6% and improved water use efficiency by 5.2%, both with less yearly variation, compared with conventional tillage. Within controlled traffic treatments, no tillage treatment NTCN showed better overall performance. In conclusion, controlled traffic combined with no-tillage and straw cover has higher performance on conserving water, improving yield and water use efficiency. It is a valuable system for soil and water conservation for the sustainable development of agriculture in dryland China.


2013 ◽  
Vol 38 (8) ◽  
pp. 1504-1512
Author(s):  
Xiao-Xia GUO ◽  
Jing-Hui LIU ◽  
Lu TIAN ◽  
Xing-Jie ZHANG ◽  
Li-Jun LI ◽  
...  

2008 ◽  
Vol 59 (4) ◽  
pp. 321 ◽  
Author(s):  
Y. P. Dang ◽  
R. C. Dalal ◽  
D. G. Mayer ◽  
M. McDonald ◽  
R. Routley ◽  
...  

Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90–1.10 m soil layer, and soil Cl in the 0.90–1.10 m soil layer, and accounted for 77–85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0–0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20961-20969
Author(s):  
Yunqing He ◽  
Wanli Nie ◽  
Ying Xue ◽  
Qishan Hu

Hydrosilylation or amination products? It depends on water amount and nucleophiles like excess water or produced/added amines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-wang Zhang ◽  
Kai-bo Wang ◽  
Jun Wang ◽  
Changhai Liu ◽  
Zhou-ping Shangguan

AbstractChanges in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0–50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0–50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0–50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


Sign in / Sign up

Export Citation Format

Share Document