X-ray microdiffraction from α-Ti0.04Fe1.96O3 (0001) epitaxial film grown over α-Cr2O3 buffer layer boundary

2011 ◽  
Vol 519 (18) ◽  
pp. 5996-5999 ◽  
Author(s):  
Chang-Yong Kim
2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


1999 ◽  
Vol 562 ◽  
Author(s):  
K. Attenborough ◽  
M. Cerisier ◽  
H. Boeve ◽  
J. De Boeck ◽  
G. Borghs ◽  
...  

ABSTRACTWe have studied the magnetic and structural properties of thin electrodeposited Co and Cu layers grown directly onto (100) n-GaAs and have investigated the influence of a buffer layer. A dominant fourfold anisotropy with a uniaxial contribution is observed in 10 nm Co electrodeposited films on GaAs. An easy axis is observed in the [001] GaAs direction with two hard axes of differing coercivities parallel to the [011] and [011] directions. For thicker films the easy axes in the [001] direction becomes less pronounced and the fourfold anisotropy becomes less dominant. Co films of similar thicknesses deposited onto an electrodeposited Cu buffer layer were nearly isotropic. From X-ray diffraction 21 nm Co layers on GaAs were found to be hcp with the c-axis tending to be in the plane of the film. The anisotropy is ascribed to the Co/GaAs interface and is held responsible for the unique spin-valve properties seen recently in electrodeposited Co/Cu films.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112403-112408 ◽  
Author(s):  
Menglong Zhu ◽  
Lu Lyu ◽  
Dongmei Niu ◽  
Hong Zhang ◽  
Shitan Wang ◽  
...  

The effect of a MoO3 buffer layer inserted between 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) and Co single-crystal film has been investigated using X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS).


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroaki Yokoo ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractWe have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.


2013 ◽  
Vol 652-654 ◽  
pp. 1846-1850
Author(s):  
Thin Thin Thwe ◽  
Than Than Win ◽  
Yin Maung Maung ◽  
Ko Ko Kyaw Soe

Hydrothermal synthesized lead titanate (PbTiO3¬) powder was prepared in a Teflon-lined stainless steel bomb at different bath temperatures. X-ray diffraction was performed to examine the phase assignment and crystallographic properties of hydrothermal synthesized lead titanate powder. Silicon dioxide (SiO2) was thermally deposited and adapted as intermediate layer on p-Si (100) substrates for MFIS (Metal/Ferroelectric/ Insulator/Semi-conductor) design. The microstructures of PbTiO3 film for both MFS and MFIS designs were observed by scanning electron microscopy (SEM). Charge conduction mechanism was also interpreted by C-2-V relationship. Polarization and electric field characteristics were measured by Sawyer-Tower circuit and good hysteresis nature was formed for both structures of the films. The loop of MFIS was wider than that of MFS cell. Also, the higher value of polarization (Ps=3.21E-03µC/cm2) for MFIS could be explained on the basis of higher dipole moment in this SiO2 buffer layer.


1989 ◽  
Vol 160 ◽  
Author(s):  
G. Bai ◽  
M-A. Nicolet ◽  
S.-J. Kim ◽  
R.G. Sobers ◽  
J.W. Lee ◽  
...  

AbstractSingle layers of ~ 0.5µm thick InuGa1-uAs1-vPv (0.52 < u < 0.63 and 0.03 < v < 0.16) were grown epitaxially on InP(100) substrates by liquid phase epitaxy at ~ 630°C. The compositions of the films were chosen to yield a constant banndgap of ~ 0.8 eV (λ = 1.55 µm) at room temperature. The lattice mismatch at room temperature between the epitaxial film and the substrate varies from - 4 × 10-3 to + 4 × 10-3. The strain in the films was characterized in air by x-ray double crystal diffractometry with a controllable heating stage from 23°C to ~ 700°C. All the samples have an almost coherent interfaces from 23°C to about ~ 330°C with the lattice mismatch accomodated mainly by the tetragonal distortion of the epitaxial films. In this temperature range, the x-ray strain in the growth direction increases linearly with temperature at a rate of (2.0 ± 0.4) × 10-6/°C and the strain state of the films is reversible. Once the samples are heated above ~ 300°C, a significant irreversible deterioration of the epitaxial films sets in.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012051
Author(s):  
Sanwei Liu ◽  
Chao Qiu ◽  
Yi Xie ◽  
Jianjia Duan ◽  
Fuyong Huang ◽  
...  

Abstract As a component of the Internet of things, high-voltage cables are the power supply infrastructure for the modern development of cities. The operation experience shows that the high-voltage cable has been broken down many times, due to the defective operation. At present, due to the limitation of detection technology, the research on detection and identification of defects in high-voltage cables is progressing slowly. Therefore, a new DR technology based on X-ray digital imaging is proposed in this paper to realize real-time detection of defects in the semi-conductive buffer layer of high-voltage cables, and intelligent detection of DR images of high-voltage cables by using image depth processing technology to realize intelligent identification of defects in the buffer layer of power cables. The results show that using the new DR technique proposed in this paper, the accurate and intuitive DR image of high-voltage cable can be obtained quickly, and the intelligent identification of defects can be realized.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2646-2651
Author(s):  
F. RICCI ◽  
F. CARILLO ◽  
F. LOMBARDI ◽  
F. MILETTO GRANOZIO ◽  
U. SCOTTI DI UCCIO ◽  
...  

(110) and (103) YBa 2 Cu 3 O 7 films have been grown onto exact and vicinal (110) SrTiO 3 substrates, and on vicinal (110) MgO substrates with a SrTiO 3 buffer layer. The samples are carefully characterised by reciprocal space mapping with x-ray diffraction, in order to investigate the features of the typical double domain of (110) and (103) YBa 2 Cu 3 O 7 structure. It is demonstrated that vicinal cut substrates allow to select one film/substrate epitaxial relation. The growth properties of these thin films deposited on vicinal surfaces are discussed.


1995 ◽  
Vol 379 ◽  
Author(s):  
B. Jenichen ◽  
H. Neuroth ◽  
B. Brar ◽  
H. Kroemer

ABSTRACTShort-period (InAs)6/(AlSb)6 superlattices (SL) with AlAs-like and InSb-like interfaces (IF) grown on a relaxed AlSb buffer layer are studied by X-ray reflectivity and diffractometry measurements. Reflectivity measurements reveal average IF roughnesses between 0.6 and 1.0 nm. Measurements of the diffuse scattering show that the roughness is highly correlated from layer to layer. Triple crystal area scans illustrate that the inhomogeneous deformation of the buffer layer leads to a certain symmetric peak broadening. In the case of AlAs-like IFs an additional broadening of the SL peaks reveals lattice parameter gradients over the superlattice. This asymmetric peak broadening may be attributed to a further relaxation of the superlattice, which is inhomogeneous with depth. The diffusion of As into the AlSb layers leads to a peak shift and modifies the intensity ratios of the different satellite reflections. The best structural quality is achieved for superlattices with InSb-like IFs.


Sign in / Sign up

Export Citation Format

Share Document