Types of nitrogen incorporation in reactively sputtered titania thin films: Influence on UV–visible, photocatalytic and photoconduction properties

2016 ◽  
Vol 616 ◽  
pp. 466-476 ◽  
Author(s):  
Ramanathaswamy Pandian ◽  
Gomathi Natarajan ◽  
Nanda Gopala Krishna Dhaipule ◽  
Arun K. Prasad ◽  
M. Kamruddin ◽  
...  
2001 ◽  
Vol 89 (11) ◽  
pp. 6314-6319 ◽  
Author(s):  
J. L. Menéndez ◽  
G. Armelles ◽  
A. Cebollada ◽  
F. Briones ◽  
F. Peiró ◽  
...  

1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kooliyankal Naseema ◽  
Kaniyamkandy Ribin ◽  
Nidiyanga Navya ◽  
Prasoon Prasannan

AbstractNano crystalline zinc sulfide thin films were deposited onto glass substrates by chemical bath deposition method. One of the samples was annealed at 300 °C for 2 h in air using a muffle furnace. The prepared thin films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and Raman spectroscopy (FT-R) studies before and after annealing. The analysis confirmed the thermal-induced anion substitution and conversion of ZnS crystal to ZnO wurtzite crystal. XRD pattern showed that these films were phase pure and polycrystalline in nature. Optical band gap was found to be 3.86 eV for ZnS and 3.21 eV for ZnO. The films prepared by this simple, low-cost technique are suitable for photovoltaic and optoelectronic applications.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Julia Marí-Guaita ◽  
Amal Bouich ◽  
Bernabé Marí

In this work, FAPbI3 thin films with different antisolvents (toluene, diethyl ether and chlorobenzene) were successfully elaborated by the spin coating technique to study the influence of the different antisolvents in the films. The crystal structure, surface morphology and optical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) photoluminescence and UV–visible spectrometry. According to XRD, the crystalline structure of FAPbI3 was found in the orientation of the (110) plane, and it is observed that the type of antisolvent content in the absorber layer plays an important role in the growth and stabilization of the film. Here, chlorobenzene leads to a smooth and homogenous surface, a large grain size and a pinhole-free perovskite film. Additionally, the optical analysis revealed that the band gap is in the range from 1.55 to 1.57 eV. Furthermore, in an approximately 60% humidity environment and after two weeks, the stability and absorption of FaPbI3 showed low degradation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


2019 ◽  
Vol 17 (40) ◽  
pp. 50-58
Author(s):  
S. J. Kadhem

Diamond-like carbon (DLC) homogeneous thin films were deposited from cyclohexane (Ccyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (C 6H12 ) liquid by using a plasma jet system which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 kv and kv and kv and kv and frequency 28 frequency 28frequency 28 frequency 28frequency 28frequency 28frequency 28frequency 28 kHz. kHz. The optical and structural properties and chemical bonding of these films were investigated. In this work, the effect of changing the distance between the substrate and the plasma torch (2, 2.5 and 3 cm) was studied. The flow rate of argon gas which used to generate the plasma was fixed (0.5 L/min). These films were characterized by UV–Visible spectrophotometer, X-ray diffractometer (XRD) and scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR). The maximum absorption (λmax) appears around 312, 298.3 and 293.2 nm at the three distance between plasma torch and the substrate 2.5, 2 and 3 cm, respectively. The values of the optical energy gap are 3.47, 3.65 and 3.76 eV at a different distance (2, 2.5 and 3cm), respectively. In XRD diffraction pattern, The occurrence of diamond peaks and graphite peaks in the x-ray spectrum for these films Indicates that there is an occurrence of local ordered sp3 and sp2 for carbon domains and graphite respectively.


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


Sign in / Sign up

Export Citation Format

Share Document