Paleoclimate Changes during the last 100,000 yr from a Record in the Brazilian Atlantic Rainforest region and Interhemispheric Comparison

2005 ◽  
Vol 64 (3) ◽  
pp. 444-450 ◽  
Author(s):  
M.-P. Ledru ◽  
D.-D. Rousseau ◽  
F.W. Cruz ◽  
C. Riccomini ◽  
I. Karmann ◽  
...  

AbstractA long terrestrial record, Colônia CO-3, from the Atlantic rainforest region in Brazil (23°52′S, 46°42′20 ʺW, 900 m a.s.l.) registrates variations in the forest expansion during the last 100,000 yr. The 780-cm depth core was analyzed at 2-cm intervals and arboreal pollen frequencies were compared to nearby speleothem stable isotope records and neighboring marine records from the tropical Atlantic. To evaluate regional versus global climate forcing, our record was compared with Greenland and Antarctic ice-core records. These comparisons suggest that changes in temperature seen in polar latitudes relate to moisture changes: e.g., to changes in the length of the dry season, in tropical and subtropical latitudes during glacial as well as interglacial times. These climatic changes result from changes in the frequency of polar air incursions to these latitudes inducing a permanent cloud cover and precipitation. This is an important result that should help define paleoclimatic features in the Southern Hemisphere for the last glaciation.

1990 ◽  
Vol 14 ◽  
pp. 358-358
Author(s):  
Mary Jo Spencer ◽  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
Mark S. Twickler ◽  
Pieter Grootes

In 1984 a 200-m ice core was collected from a local accumulation basin in the Dominion Range, Transantarctic Mountains, Antarctica. A complete oxygen isotope record has been obtained and a considerable portion of the core has been analyzed in detail for chloride, nitrate, sulfate, and sodium. About half of the chloride is due to sea salt with the remainder originating as gaseous HCl. Nitrate levels have increased markedly over the last 1000 years whereas the levels of the other constituents have remained fairly constant.The oxygen isotope results suggest that this region of Antarctica is responding to long-term global climate forcing as well as to shorter-term climatic variations. This data will be compared with the anion and sodium records in order to determine the effects of climatic forcing on these other records. In particular, nitrate appears to vary in concert with fluctuations in long-term climate. Additionally, variations in each constituent over the 3500 year period will be examined in detail to determine the influence of other processes which affect their concentrations.


1994 ◽  
Vol 41 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Neil C. Sturchio ◽  
Kenneth L. Pierce ◽  
Michael T. Murrell ◽  
Michael L. Sorey

AbstractUranium-series age determinations by mass spectrometric methods were done for travertines and associated carbonate veins related to clastic deposits of the last glaciation (Pinedale) in the northern Yellowstone area. Dramatic variations in the hydrologic head are inferred from variations in the elevation of travertine deposition with time and are consistent with the expected hydrologic effects of glaciation. We determine the following chronology of the Pinedale Glaciation, with the key assumption that travertine deposits (and associated carbonate veins) perched high above present thermal springs were deposited when glaciers filled the valley below these perched deposits: (1) the early Pinedale outlet glacier advanced well downvalley between 47,000 and 34,000 yr B.P.; (2) the outlet glacier receded to an interstadial position between 34,000 and 30,000 yr B.P.; (3) an extensive Pinedale ice advance occurred between 30,000 and 22,500 yr B.P.; (4) a major recession occurred between 22,500 and 19,500 yr B.P.; (5) a minor readvance (Deckard Flats) culminated after 19,500 yr B.P.; and (6) recession from the Deckard Flats position was completed before 15,500 yr B.P. This chronology is consistent with the general trend of climatic changes in the northern hemisphere as revealed by recent high-resolution ice-core records from the Greenland ice sheet.


1990 ◽  
Vol 14 ◽  
pp. 358
Author(s):  
Mary Jo Spencer ◽  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
Mark S. Twickler ◽  
Pieter Grootes

In 1984 a 200-m ice core was collected from a local accumulation basin in the Dominion Range, Transantarctic Mountains, Antarctica. A complete oxygen isotope record has been obtained and a considerable portion of the core has been analyzed in detail for chloride, nitrate, sulfate, and sodium. About half of the chloride is due to sea salt with the remainder originating as gaseous HCl. Nitrate levels have increased markedly over the last 1000 years whereas the levels of the other constituents have remained fairly constant. The oxygen isotope results suggest that this region of Antarctica is responding to long-term global climate forcing as well as to shorter-term climatic variations. This data will be compared with the anion and sodium records in order to determine the effects of climatic forcing on these other records. In particular, nitrate appears to vary in concert with fluctuations in long-term climate. Additionally, variations in each constituent over the 3500 year period will be examined in detail to determine the influence of other processes which affect their concentrations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


1988 ◽  
Vol 30 (3) ◽  
pp. 315-330 ◽  
Author(s):  
Julie M. Palais ◽  
Philip R. Kyle

The chemical composition of ice containing tephra (volcanic ash) layers in 22 sections of the Byrd Station ice core was examined to determine if the volcanic eruptions affected the chemical composition of the atmosphere and precipitation in the vicinity of Byrd Station. The liquid conductivity, acidity, sulfate, nitrate, aluminum, and sodium concentrations of ice samples deposited before, during, and after the deposition of the tephra layers were analyzed. Ice samples that contain tephra layers have, on average, about two times more sulfate and three to four times more aluminum than nonvolcanic ice samples. The acidity of ice samples associated with tephra layers is lowered by hydrolysis of silicate glass and minerals. Average nitrate, sodium, and conductivity are the same in all samples. Because much of the sulfur and chlorine originally associated with these eruptions may have been scavenged by ash particles, the atmospheric residence time of these volatiles would have been minimized. Therefore the eruptions probably had only a small effect on the composition of the Antarctic atmosphere and a negligible effect on local or global climate.


2005 ◽  
Vol 64 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Kam-biu Liu ◽  
Carl A. Reese ◽  
Lonnie G. Thompson

AbstractThis paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases�"a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.


2021 ◽  
Author(s):  
Yuko Motizuki ◽  
Yoichi Nakai ◽  
Kazuya Takahashi ◽  
Junya Hirose ◽  
Yu Vin Sahoo ◽  
...  

<p>Ice cores preserve past climatic changes and, in some cases, astronomical signals. Here we present a newly developed automated ice-core sampler that employs laser melting. A hole in an ice core approximately 3 mm in diameter is melted and heated well below the boiling point by laser irradiation, and the meltwater is simultaneously siphoned by a 2 mm diameter movable evacuation nozzle that also holds the laser fiber. The advantage of sampling by laser melting is that molecular ion concentrations and stable water isotope compositions in ice cores can be measured at high depth resolution, which is advantageous for ice cores with low accumulation rates. This device takes highly discrete samples from ice cores, attaining depth resolution as small as ~3 mm with negligible cross contamination; the resolution can also be set at longer lengths suitable for validating longer-term profiles of various ionic and water isotopic constituents in ice cores. This technique allows the detailed reconstruction of past climatic changes at annual resolution and the investigation of transient ionic and isotopic signals within single annual layers in low-accumulation cores, potentially by annual layer counting.</p>


2021 ◽  
Author(s):  
Olga Churakova (Sidorova) ◽  
Marina Fonti ◽  
Rolf Siegwolf ◽  
Tatyana Trushkina ◽  
Eugene Vaganov ◽  
...  

<p>We use an interdisciplinary approach combining stable isotopes in tree rings, pollen data, ice cores from temperature-limited environment in the Siberian north and developed a comprehensive description of the climatic changes over the past 1500 years. We found that the Climatic Optimum Period was warmer and drier compared to the Medieval one, but rather similar to the recent period. Our results indicate that the Medieval Warm period in the Taimyr Peninsula started earlier and was wetter compared to the northeastern part of Siberia (northeastern Yakutia). Summer precipitation reconstruction obtained from carbon isotopes in tree-ring cellulose from Taimyr Peninsula significantly correlated with the pollen data of the Lama Lake (Andreev et al. 2004) and oxygen isotopes of the ice core from Severnaya Zemlya (Opel et al. 2013) recording wetter climate conditions during the Medieval Warm period compared to the northeastern part of Siberia. Common large-scale climate variability was confirmed by significant relationship between oxygen isotope data in tree-ring cellulose from the Taimyr Peninsula and northeastern Yakutia, and oxygen isotope ice core data from Severnaya Zemlja during the Medieval Warm period and the recent one. Finally, we showed that the recent warming on the Taimyr Peninsula is not unprecedented in the Siberian north. Similar climate conditions were recorded by stable isotopes in tree rings, pollen, and ice core data 6000 years ago. On the northeastern part of Siberia newly developed a 1500-year summer vapor pressure deficit (VPD) reconstruction showed, that VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm period. The most humid conditions in the northeastern part of Siberia were recorded in the Early Medieval period and during the Little Ice Age. However, the increasing VPD under elevated air temperature in the last decades affects the hydrological regime of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increase will significantly affect Siberian forests most likely leading to drought even under additional access of thawed permafrost water.</p><p>This work was supported by the FP7-PEOPLE-IIF-2008 - Marie Curie Action: "International Incoming Fellowships" 235122 and "Reintegration Fellowships" 909122 “Climatic and environmental changes in the Eurasian Subarctic inferred from tree-ring and stable isotope chronologies for the past and recent periods” and the Government of Krasnoyarsk Kray and Russian Foundation for Basic Research and Krasnoyarsk Foundation 20-44-240001 “Adaptation of conifer forests on the north of the Krasnoyarsk region (Taimyr Peninsula) to climatic changes after extreme events over the past 1500 years“ awarded to Olga V. Churakova (Sidorova).</p>


2013 ◽  
Vol 9 (4) ◽  
pp. 1403-1416 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.


Radiocarbon ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 483-494 ◽  
Author(s):  
Konrad A. Hughen ◽  
Jonathan T. Overpeck ◽  
Scott J. Lehman ◽  
Michaele Kashgarian ◽  
John R. Southon ◽  
...  

Varved sediments of the tropical Cariaco Basin provide a new 14C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10–14.5 cal ka bp). Independent evaluations of the Cariaco Basin calendar and 14C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to 14C age agreement with terrestrial 14C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin 14C reservoir age remained stable throughout the Younger Dryas and late Allerød climatic events and that the varve and 14C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of 14C change not seen in the coral records. 14C plateaus can be identified at 9.6, 11.4, and 11.7 14C ka bp, in addition to a large, sloping “plateau” during the Younger Dryas (∼10 to 11 14C ka bp). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.


Sign in / Sign up

Export Citation Format

Share Document