Low-density silicon nitride beads as high-temperature microwave furnace insulation

1997 ◽  
Vol 32 (6) ◽  
pp. 749-754 ◽  
Author(s):  
Ross H. Plovnick ◽  
Zak Fathi ◽  
James O. Kiggans
Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


2017 ◽  
Vol 43 (6) ◽  
pp. 5080-5088 ◽  
Author(s):  
Hiroyuki Miyazakia ◽  
Shoji Iwakiri ◽  
Kiyoshi Hirao ◽  
Shinji Fukuda ◽  
Noriya Izu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hee Young Kwon ◽  
Kyung Mee Song ◽  
Juyoung Jeong ◽  
Ah-Yeon Lee ◽  
Seung-Young Park ◽  
...  

AbstractThe discovery of a thermally stable, high-density magnetic skyrmion phase is a key prerequisite for realizing practical skyrmionic memory devices. In contrast to the typical low-density Néel-type skyrmions observed in technologically viable multilayer systems, with Lorentz transmission electron microscopy, we report the discovery of a high-density homochiral Néel-type skyrmion phase in magnetic multilayer structures that is stable at high temperatures up to 733 K (≈460 °C). Micromagnetic simulations reveal that a high-density skyrmion phase can be stabilized at high temperature by deliberately tuning the magnetic anisotropy, magnetic field, and temperature. The existence of the high-density skyrmion phase in a magnetic multilayer system raises the possibility of incorporating chiral Néel-type skyrmions in ultrahigh-density spin memory devices. Moreover, the existence of this phase at high temperature shows its thermal stability, demonstrating the potential for skyrmion devices operating in thermally challenging modern electronic chips.


Author(s):  
Andrea Zambotti ◽  
Edoardo Caldesi ◽  
Massimo Pelizzari ◽  
Francesco Valentini ◽  
Alessandro Pegoretti ◽  
...  

1992 ◽  
Vol 7 (10) ◽  
pp. 2747-2755 ◽  
Author(s):  
C.G. McKamey ◽  
P.F. Tortorelli ◽  
J.H. DeVan ◽  
C.A. Carmichael

MoSi2 is a promising high-temperature material with low density (6.3 g/cm3), high melting point (2020 °C), and good oxidation resistance at temperatures to about 1900 °C. However, in the intermediate temperature range between 400 and 600 °C, it is susceptible to a “pest” reaction which causes catastrophic disintegration by a combination of oxidation and fracture. In this study, we have used polycrystalline MoSi2, produced by arc-casting of the pure elements and by cold and hot pressing of alloy powders, to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C. It was found that pest disintegration occurs through transport of oxygen into the interior of the specimen along pre-existing cracks and/or pores, where it reacts to form MoO3 and SiO2. The internal stress produced during the formation of MoO3 results in disintegration to powder. Near the stoichiometric ratio, the susceptibility to pest disintegration increases with increasing molybdenum content and with decreasing density. Silicon-rich alloys were able to form protective SiO2 and showed no indication of disintegration, even at densities as low as 60%.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Sign in / Sign up

Export Citation Format

Share Document