Substrate amendments can alter microbial dynamics and N availability from maize residues to subsequent crops

1998 ◽  
Vol 30 (10-11) ◽  
pp. 1281-1292 ◽  
Author(s):  
C. Ehaliotis ◽  
G. Cadisch ◽  
K.E. Giller
1997 ◽  
Vol 101 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Jose C. Ramalho ◽  
Thos L. Pons ◽  
Henri W. Groeneveld ◽  
M. Antonieta Nunes

2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2019 ◽  
Vol 7 (6) ◽  
pp. 220
Author(s):  
Mohamed Amine Bellahkim ◽  
Kamal Gueraoui ◽  
Moad Mahboub ◽  
Mohamed Taibi ◽  
Rihab Belgada ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129873
Author(s):  
Chelsea Salter ◽  
Danielle VanMensel ◽  
Thomas Reid ◽  
Johnna Birbeck ◽  
Judy Westrick ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 595
Author(s):  
Shama Naz ◽  
Qiufang Shen ◽  
Jonas Lwalaba Wa Lwalaba ◽  
Guoping Zhang

Nitrogen (N) availability and form have a dramatic effect on N uptake and assimilation in plants, affecting growth and development. In the previous studies, we found great differences in low-N tolerance between Tibetan wild barley accessions and cultivated barley varieties. We hypothesized that there are different responses to N forms between the two kinds of barleys. Accordingly, this study was carried out to determine the response of four barley genotypes (two wild, XZ16 and XZ179; and two cultivated, ZD9 andHua30) under 4Nforms (NO3−, NH4+, urea and glycine). The results showed significant reduction in growth parameters such as root/shoot length and biomass, as well as photosynthesis parameters and total soluble protein content under glycine treatment relative to other N treatments, for both wild and cultivated barley, however, XZ179 was least affected. Similarly, ammonium adversely affected growth parameters in both wild and cultivated barleys, with XZ179 being severely affected. On the other hand, both wild and cultivated genotypes showed higher biomass, net photosynthetic rate, chlorophyll and protein in NO3− treatment relative to other three N treatments. It may be concluded that barley undisputedly grows well under inorganic nitrogen (NO3−), however in response to the organic N wild barley prefer glycine more than cultivated barely.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javed Akhatar ◽  
Anna Goyal ◽  
Navneet Kaur ◽  
Chhaya Atri ◽  
Meenakshi Mittal ◽  
...  

AbstractTimely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.


Sign in / Sign up

Export Citation Format

Share Document