Switching characteristics of silicon carbide power PiN diodes

2000 ◽  
Vol 44 (2) ◽  
pp. 317-323 ◽  
Author(s):  
A. Elasser ◽  
M. Ghezzo ◽  
N. Krishnamurthy ◽  
J. Kretchmer ◽  
A.W. Clock ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4566 ◽  
Author(s):  
Asllani ◽  
Morel ◽  
Phung ◽  
Planson

This paper presents the design, fabrication and characterization results obtained on the last generation (third run) of SiC 10 kV PiN diodes from SuperGrid Institute. In forward bias, the 59 mm2 diodes were tested up to 100 A. These devices withstand voltages up to 12 kV on wafer (before dicing, packaging) and show a low forward voltage drop at 80 A. The influence of the temperature from 25 °C to 125 °C has been assessed and shows that resistivity modulation occurs in the whole temperature range. Leakage current at 3 kV increases with temperature, while being three orders of magnitude lower than those of equivalent Si diodes. Double-pulse switching tests reveal the 10 kV SiC PiN diode’s outstanding performance. Turn-on dV/dt and di/dt are −32 V/ns and 311 A/µs, respectively, whereas turn-off dV/dt and di/dt are 474 V/ns and −4.2 A/ns.


2006 ◽  
Vol 527-529 ◽  
pp. 1355-1358 ◽  
Author(s):  
Brett A. Hull ◽  
Mrinal K. Das ◽  
Jim Richmond ◽  
Bradley Heath ◽  
Joseph J. Sumakeris ◽  
...  

Forward voltage (VF) drift, in which a 4H-SiC PiN diode suffers from an irreversible increase in VF under forward current flow, continues to inhibit commercialization of 4H-SiC PiN diodes. We present our latest efforts at fabricating high blocking voltage (6 kV), high current (up to 50 A) 4H-SiC PiN diodes with the best combination of reverse leakage current (IR), forward voltage at rated current (VF), and VF drift yields. We have achieved greater than 60% total die yield onwafer for 50 A diodes with a chip size greater than 0.7 cm2. A comparison of the temperature dependent conduction and switching characteristics between a 50 A/6 kV 4H-SiC PiN diode and a commercially available 60 A/4.5 kV Si PiN diode is also presented.


2008 ◽  
Vol 600-603 ◽  
pp. 951-954 ◽  
Author(s):  
Ty McNutt ◽  
Stephen Van Campen ◽  
Andy Walker ◽  
Kathy Ha ◽  
Chris Kirby ◽  
...  

The development of 10 kV silicon carbide (SiC) MOSFETs and Junction Barrier Schottky (JBS) diodes for application to a 13.8kV 2.7 MVA Solid State Power Substation (SSPS) is shown. The design of half-bridge power modules has extensively used simulation, from electron level device simulations to the system level trade studies, to develop the most efficient module for use in the SSPS. In the work presented within, numerical simulations and experimental results are shown to demonstrate the design and operation of 10 kV JBS diodes. It is shown that JBS diodes at 10 kV can reduce 31% of the switching losses at 20 kHz than the fastest SiC PiN diodes.


2006 ◽  
Vol 16 (02) ◽  
pp. 545-556 ◽  
Author(s):  
BURAK OZPINECI ◽  
MADHU SUDHAN CHINTHAVALI ◽  
LEON M. TOLBERT

Silicon carbide ( SiC ) unipolar devices have much higher breakdown voltages than silicon ( Si ) unipolar devices because of the ten times greater electric field strength of SiC compared with Si . 4H - SiC unipolar devices have higher switching speeds due to the higher bulk mobility of 4H - SiC compared to other polytypes. In this paper, four commercially available SiC Schottky diodes with different voltage and current ratings, VJFET, and MOSFET samples have been tested to characterize their performance at different temperatures ranging from -50°C to 175°C. Their forward characteristics and switching characteristics in this temperature range are presented. The characteristics of the SiC Schottky diodes are compared with those of a Si pn diode with comparable ratings.


2006 ◽  
Vol 911 ◽  
Author(s):  
Zhaoxu Tian ◽  
Nathaniel R Quick ◽  
Aravinda Kar

AbstractA laser solid phase diffusion technique has been utilized to fabricate endolayers in n-type 6H-SiC substrates by carbon incorporation. X-ray energy dispersive spectrometry (XEDS) analysis showed that the thickness of endolayer is about 100 nm. High resolution transmission electron microscopy (HREM) images indicate that the laser endotaxy process maintains the crystalline integrity of the substrate without any amorphization. The resistivity of the endolayer was 1.1 ¡Á105 •cm and 9.4 ¡Á104 •cm after annealing at 1000C for 10 min. These resistivities provide device isolation for many applications. The silicon carbide endolayer was doped with aluminum using a laser doping technique to create p-region on the top surface of the endolayer in order to fabricate PIN diodes.


Sign in / Sign up

Export Citation Format

Share Document