FC12-05 - Genetic effects on emotional network connectivity: FMRI study of healthy individuals

2011 ◽  
Vol 26 (S2) ◽  
pp. 1880-1880
Author(s):  
S. Surguladze ◽  
J. Radua ◽  
W. El Hage ◽  
M.L. Phillips

IntroductionIt has been previously shown that genes implicated in psychiatric disorders modulated Blood oxygenation level dependent (BOLD) effect in brain regions. These studies add to the knowledge of vulnerability to disorders.ObjectivesThis study has investigated genetic modulation of brain networks associated with emotion processing.Aim of this study was to examine the effect of two genetic markers (5HTTLPR and COMT) on BOLD effect connectivity in healthy individuals.MethodsNinety-one participants participated in four fMRI experiments (at 3T), with dynamic facial expressions of fear, anger, sadness or happiness. We explored the effect of genetic polymorphisms on empirically defined brain network commonly associated with the responses to any emotional expressions. Connectivity was examined by means of Granger analysis allowing to estimate the directionality of information flow between the defined brain regions.ResultsPerception of dynamic emotional facial expressions was commonly associated with activation of the bilateral fusiform gyrus, right superior temporal sulcus, bilateral dorso-lateral prefrontal cortex and right amygdala. The genetic modulation of this network was observed only in experiments with fearful facial expressions. There was an interaction between the effects of genetic polymorphisms and the measures of connectivity: (p = 0.0002, adjusted R2 = 18%). This was accounted for by lower connectivity in individuals lacking both copies of COMT Val polymorphism who at the same time lacked both copies of L polymorphism of 5HTTLPR gene.ConclusionsOur results clarify the mechanism of brain network reactivity to emotional signals that is associated with genetic polymorphisms.

Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Author(s):  
Roger E. Beaty ◽  
Rex E. Jung

Cognitive neuroscience research has begun to address the potential interaction of brain networks supporting creativity by employing new methods in brain network science. Network methods offer a significant advance compared to individual region of interest studies due to their ability to account for the complex and dynamic interactions among discrete brain regions. As this chapter demonstrates, several recent studies have reported a remarkably similar pattern of brain network connectivity across a range of creative tasks and domains. In general, such work suggests that creative thought may involve dynamic interactions, primarily between the default and control networks, providing key insights into the roles of spontaneous and controlled processes in creative cognition. The chapter summarizes this emerging body of research and proposes a framework designed to account for the joint influence of controlled and spontaneous thought processes in creativity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Charlott Maria Bodenschatz ◽  
Felix Czepluch ◽  
Anette Kersting ◽  
Thomas Suslow

Abstract Background Major depressive disorder has been associated with specific attentional biases in processing emotional facial expressions: heightened attention for negative and decreased attention for positive faces. However, using visual search paradigms, previous reaction-time-based research failed, in general, to find evidence for increased spatial attention toward negative facial expressions and reduced spatial attention toward positive facial expressions in depressed individuals. Eye-tracking analyses allow for a more detailed examination of visual search processes over time during the perception of multiple stimuli and can provide more specific insights into the attentional processing of multiple emotional stimuli. Methods Gaze behavior of 38 clinically depressed individuals and 38 gender matched healthy controls was compared in a face-in-the-crowd task. Pictures of happy, angry, and neutral facial expressions were utilized as target and distractor stimuli. Four distinct measures of eye gaze served as dependent variables: (a) latency to the target face, (b) number of distractor faces fixated prior to fixating the target, (c) mean fixation time per distractor face before fixating the target and (d) mean fixation time on the target. Results Depressed and healthy individuals did not differ in their manual response times. Our eye-tracking data revealed no differences between study groups in attention guidance to emotional target faces as well as in the duration of attention allocation to emotional distractor and target faces. However, depressed individuals fixated fewer distractor faces before fixating the target than controls, regardless of valence of expressions. Conclusions Depressed individuals seem to process angry and happy expressions in crowds of faces mainly in the same way as healthy individuals. Our data indicate no biased attention guidance to emotional targets and no biased processing of angry and happy distractors and targets in depression during visual search. Under conditions of clear task demand depressed individuals seem to be able to allocate and guide their attention in crowds of angry and happy faces as efficiently as healthy individuals.


2011 ◽  
Vol 41 (11) ◽  
pp. 2253-2264 ◽  
Author(s):  
L. R. Demenescu ◽  
R. Renken ◽  
R. Kortekaas ◽  
M.-J. van Tol ◽  
J. B. C. Marsman ◽  
...  

BackgroundDepression has been associated with limbic hyperactivation and frontal hypoactivation in response to negative facial stimuli. Anxiety disorders have also been associated with increased activation of emotional structures such as the amygdala and insula. This study examined to what extent activation of brain regions involved in perception of emotional faces is specific to depression and anxiety disorders in a large community-based sample of out-patients.MethodAn event-related functional magnetic resonance imaging (fMRI) paradigm was used including angry, fearful, sad, happy and neutral facial expressions. One hundred and eighty-two out-patients (59 depressed, 57 anxiety and 66 co-morbid depression-anxiety) and 56 healthy controls selected from the Netherlands Study of Depression and Anxiety (NESDA) were included in the present study. Whole-brain analyses were conducted. The temporal profile of amygdala activation was also investigated.ResultsFacial expressions activated the amygdala and fusiform gyrus in depressed patients with or without anxiety and in healthy controls, relative to scrambled faces, but this was less evident in patients with anxiety disorders. The response shape of the amygdala did not differ between groups. Depressed patients showed dorsolateral prefrontal cortex (PFC) hyperactivation in response to happy faces compared to healthy controls.ConclusionsWe suggest that stronger frontal activation to happy faces in depressed patients may reflect increased demands on effortful emotion regulation processes triggered by mood-incongruent stimuli. The lack of strong differences in neural activation to negative emotional faces, relative to healthy controls, may be characteristic of the mild-to-moderate severity of illness in this sample and may be indicative of a certain cognitive-emotional processing reserve.


Author(s):  
Shuangli Chen ◽  
Andan Qian ◽  
Jiejie Tao ◽  
Ronghui Zhou ◽  
Chuqi Fu ◽  
...  

AbstractThe dopamine D4 receptor gene (DRD4) has been consistently reported to be associated with attention-deficit/hyperactivity disorder (ADHD). Recent studies have linked DRD4 to functional connectivity among specific brain regions. The current study aimed to compare the effects of the DRD4 genotype on functional integrity in drug-naïve ADHD children and healthy children. Resting-state functional MRI images were acquired from 49 children with ADHD and 37 healthy controls (HCs). We investigated the effects of the 2-repeat allele of DRD4 on brain network connectivity in both groups using a parameter called the degree of centrality (DC), which indexes local functional relationships across the entire brain connectome. A voxel-wise two-way ANCOVA was performed to examine the diagnosis-by-genotype interactions on DC maps. Significant diagnosis-by-genotype interactions with DC were found in the temporal lobe, including the left inferior temporal gyrus (ITG) and bilateral middle temporal gyrus (MTG) (GRF corrected at voxel level p < 0.001 and cluster level p < 0.05, two-tailed). With the further subdivision of the DC network according to anatomical distance, additional brain regions with significant interactions were found in the long-range DC network, including the left superior parietal gyrus (SPG) and right middle frontal gyrus (MFG). The post-hoc pairwise analysis found that altered network centrality related to DRD4 differed according to diagnostic status (p < 0.05). This genetic imaging study suggests that the DRD4 genotype regulates the functional integration of brain networks in children with ADHD and HCs differently. This may have important implications for our understanding of the role of DRD4 in altering functional connectivity in ADHD subjects.


2021 ◽  
Vol 11 (11) ◽  
pp. 1396
Author(s):  
Ermanno Quadrelli ◽  
Elisa Roberti ◽  
Silvia Polver ◽  
Hermann Bulf ◽  
Chiara Turati

The present study investigated whether, as in adults, 7-month-old infants’ sensorimotor brain areas are recruited in response to the observation of emotional facial expressions. Activity of the sensorimotor cortex, as indexed by µ rhythm suppression, was recorded using electroencephalography (EEG) while infants observed neutral, angry, and happy facial expressions either in a static (N = 19) or dynamic (N = 19) condition. Graph theory analysis was used to investigate to which extent neural activity was functionally localized in specific cortical areas. Happy facial expressions elicited greater sensorimotor activation compared to angry faces in the dynamic experimental condition, while no difference was found between the three expressions in the static condition. Results also revealed that happy but not angry nor neutral expressions elicited a significant right-lateralized activation in the dynamic condition. Furthermore, dynamic emotional faces generated more efficient processing as they elicited higher global efficiency and lower networks’ diameter compared to static faces. Overall, current results suggest that, contrarily to neutral and angry faces, happy expressions elicit sensorimotor activity at 7 months and dynamic emotional faces are more efficiently processed by functional brain networks. Finally, current data provide evidence of the existence of a right-lateralized activity for the processing of happy facial expressions.


Neurology ◽  
2020 ◽  
Vol 95 (19) ◽  
pp. e2635-e2647 ◽  
Author(s):  
Lindsay D. Oliver ◽  
Chloe Stewart ◽  
Kristy Coleman ◽  
James H. Kryklywy ◽  
Robert Bartha ◽  
...  

ObjectiveTo determine whether intranasal oxytocin, alone or in combination with instructed mimicry of facial expressions, would augment neural activity in patients with frontotemporal dementia (FTD) in brain regions associated with empathy, emotion processing, and the simulation network, as indexed by blood oxygen–level dependent (BOLD) signal during fMRI.MethodsIn a placebo-controlled, randomized crossover design, 28 patients with FTD received 72 IU intranasal oxytocin or placebo and then completed an fMRI facial expression mimicry task.ResultsOxytocin alone and in combination with instructed mimicry increased activity in regions of the simulation network and in limbic regions associated with emotional expression processing.ConclusionsThe findings demonstrate latent capacity to augment neural activity in affected limbic and other frontal and temporal regions during social cognition in patients with FTD, and support the promise and need for further investigation of these interventions as therapeutics in FTD.ClinicalTrials.gov identifierNCT01937013.Classification of evidenceThis study provides Class III evidence that a single dose of 72 IU intranasal oxytocin augments BOLD signal in patients with FTD during viewing of emotional facial expressions.


2021 ◽  
pp. 1-10
Author(s):  
Lisa K. Chinn ◽  
Irina Ovchinnikova ◽  
Anastasia A. Sukmanova ◽  
Aleksandra O. Davydova ◽  
Elena L. Grigorenko

Abstract Millions of children worldwide are raised in institutionalized settings. Unfortunately, institutionalized rearing is often characterized by psychosocial deprivation, leading to difficulties in numerous social, emotional, physical, and cognitive skills. One such skill is the ability to recognize emotional facial expressions. Children with a history of institutional rearing tend to be worse at recognizing emotions in facial expressions than their peers, and this deficit likely affects social interactions. However, emotional information is also conveyed vocally, and neither prosodic information processing nor the cross-modal integration of facial and prosodic emotional expressions have been investigated in these children to date. We recorded electroencephalograms (EEG) while 47 children under institutionalized care (IC) (n = 24) or biological family care (BFC) (n = 23) viewed angry, happy, or neutral facial expressions while listening to pseudowords with angry, happy, or neutral prosody. The results indicate that 20- to 40-month-olds living in IC have event-related potentials (ERPs) over midfrontal brain regions that are less sensitive to incongruent facial and prosodic emotions relative to children under BFC, and that their brain responses to prosody are less lateralized. Children under IC also showed midfrontal ERP differences in processing of angry prosody, indicating that institutionalized rearing may specifically affect the processing of anger.


2017 ◽  
Vol 1 (S1) ◽  
pp. 6-6
Author(s):  
Joey Annette Contreras ◽  
Shannon L. Risacher ◽  
Mario Dzemidzic ◽  
John D. West ◽  
Brenna C. McDonald ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Recent evidence from resting-state fMRI studies have shown that brain network connectivity is altered in patients with neurodegenerative disorders. However, few studies have examined the complete connectivity patterns of these well-reported RSNs using a whole brain approach and how they compare between dementias. Here, we used advanced connectomic approaches to examine the connectivity of RSNs in Alzheimer disease (AD), Frontotemporal dementia (FTD), and age-matched control participants. METHODS/STUDY POPULATION: In total, 44 participants [27 controls (66.4±7.6 years), 13 AD (68.5.63±13.9 years), 4 FTD (59.575±12.2 years)] from an ongoing study at Indiana University School of Medicine were used. Resting-state fMRI data was processed using an in-house pipeline modeled after Power et al. (2014). Images were parcellated into 278 regions of interest (ROI) based on Shen et al. (2013). Connectivity between each ROI pair was described by Pearson correlation coefficient. Brain regions were grouped into 7 canonical RSNs as described by Yeo et al. (2015). Pearson correlation values were then averaged across pairs of ROIs in each network and averaged across individuals in each group. These values were used to determine relative expression of FC in each RSN (intranetwork) and create RSN profiles for each group. RESULTS/ANTICIPATED RESULTS: Our findings support previous literature which shows that limbic networks are disrupted in FTLD participants compared with AD and age-matched controls. In addition, interactions between different RSNs was also examined and a significant difference between controls and AD subjects was found between FP and DMN RSNs. Similarly, previous literature has reported a disruption between executive (frontoparietal) network and default mode network in AD compared with controls. DISCUSSION/SIGNIFICANCE OF IMPACT: Our approach allows us to create profiles that could help compare intranetwork FC in different neurodegenerative diseases. Future work with expanded samples will help us to draw more substantial conclusions regarding differences, if any, in the connectivity patterns between RSNs in various neurodegenerative diseases.


2018 ◽  
Author(s):  
Colleen Mills-Finnerty ◽  
Catherine Hanson ◽  
Stephen J Hanson

In daily life we are often forced to choose between the “lesser of two evils,” yet there remains limited understanding of how the brain encodes choices between aversive stimuli, particularly choices involving hypothetical futures. We tested how choice framing affects brain activity and network connectivity by having participants make choices about individualized, aversive, hypothetical stimuli (i.e. illnesses, car accidents, etc.) under approach and avoidance frames (“which would you rather have/avoid”) during fMRI scanning. We tested whether limbic and frontal regions show patterns of signal intensity and network connectivity that differed by frame, and compared this to response to similar appetitive choices involving appetitive preferences (i.e. hobbies, vacation destinations). We predicted that regions such as the insula, amgydala, and striatum would respond differently to approach vs. avoidance choices during aversive hypothetical choices. We identified activations for both choice frames in areas broadly associated with decision making, including the putamen, insula, and anterior cingulate, as well as deactivations in areas shown to be sensitive to valence, including the amygdala, insula, prefrontal cortex, and hippocampus. Connectivity between brain regions differed based on choice frame, with greater connectivity among deactive regions including the amygdala, insula, and ventromedial prefrontal cortex during avoidance frames compared to approach frames. These differences suggest that approach and avoidance frames lead to different behavioral and brain network response when deciding which of two evils are the lesser.


Sign in / Sign up

Export Citation Format

Share Document