Photosensitization of human skin cell lines by ATMPn (9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene) in vitro: mechanism of action

1999 ◽  
Vol 48 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Sonja Fickweiler ◽  
Christoph Abels ◽  
Sigrid Karrer ◽  
Wolfgang Bäumler ◽  
Michael Landthaler ◽  
...  
1988 ◽  
Vol 106 (3) ◽  
pp. 761-771 ◽  
Author(s):  
P Boukamp ◽  
R T Petrussevska ◽  
D Breitkreutz ◽  
J Hornung ◽  
A Markham ◽  
...  

In contrast to mouse epidermal cells, human skin keratinocytes are rather resistant to transformation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (greater than 140 passages), has a transformed phenotype in vitro (clonogenic on plastic and in agar) but remains nontumorigenic. Despite the altered and unlimited growth potential, HaCaT cells, similar to normal keratinocytes, reform an orderly structured and differentiated epidermal tissue when transplanted onto nude mice. Differentiation-specific keratins (Nos. 1 and 10) and other markers (involucrin and filaggrin) are expressed and regularly located. Thus, HaCaT is the first permanent epithelial cell line from adult human skin that exhibits normal differentiation and provides a promising tool for studying regulation of keratinization in human cells. On karyotyping this line is aneuploid (initially hypodiploid) with unique stable marker chromosomes indicating monoclonal origin. The identity of the HaCaT line with the tissue of origin was proven by DNA fingerprinting using hypervariable minisatellite probes. This is the first demonstration that the DNA fingerprint pattern is unaffected by long-term cultivation, transformation, and multiple chromosomal alterations, thereby offering a unique possibility for unequivocal identification of human cell lines. The characteristics of the HaCaT cell line clearly document that spontaneous transformation of human adult keratinocytes can occur in vitro and is associated with sequential chromosomal alterations, though not obligatorily linked to major defects in differentiation.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 16
Author(s):  
Hrstka ◽  
Skoupilová ◽  
Bartošík ◽  
Sommerová ◽  
Karban ◽  
...  

Chemotherapy is an essential treatment that still plays a vital role in cancer treatment worldwide. The ferrocene derivatives of the general formula [Fe{(η5‑C5H4CH2(p‑C6H4)CH2(N‑het)}2] bearing modified six and five membered N-heterocycles were tested in vitro for their cytotoxic properties against ovarian cancer cell lines A2780 and SK-OV-3. These ferrocene complexes displayed cytotoxicity in low micromolar concentrations against both cell lines. To study cellular uptake of particular ferrocenes into tumor cells, we used differential pulse voltammetry and ICP-MS. We confirmed the crucial role of transferrin receptors in the process of intracellular accumulation of these ferrocenes. Interestingly, the rate of intracellular accumulation of particular ferrocenes clearly mirrored the cytotoxicity of these organometallic compounds. Deeper investigation of the mechanism by which ferrocenes kill tumor cells revealed induction of apoptosis associated with significant increase of reactive oxygen species. In conclusion, our screening identified several ferrocene derivatives exerting promising cytostatic activity in vitro. Further investigation led to the identification of the mechanism of action of these potential anticancer agents, which represents an important milestone in preclinical anticancer drug discovery programs. This work was supported by the project MEYS-NPS I-LO1413, MH CZ-DRO (MMCI, 00209805) and Czech Science Foundation project 17-05838S.


2014 ◽  
Vol 26 (1) ◽  
pp. 224
Author(s):  
L. T. Martins ◽  
L. H. Aguiar ◽  
C. E. M. Calderón ◽  
S. G. Neto ◽  
K. C. S. Tavares ◽  
...  

The aim of this study was to compare the efficiency of goat cloning by using cell lineages from distinct transgenic backgrounds. Primary fibroblast skin cell cultures from 2 females (allogeneic), transgenic for the human lysozyme gene (hLZ), were established following standard procedures. Cells from one hLZ genotype were used for the establishment of 2 double transgenic syngeneic cell lines by cell transfection (Nucleofector®, Lonza, Germany) with transgene cassettes containing either the human glucocerebrosidase gene (hGC) and neomycin resistance gene, or the human lactoferrin gene (hLF) with no selection gene. The hGC-transfected hLZ cells were antibiotic-selected (G418, Sigma-Aldrich, St. Louis, MO, USA) until the isolation of positive cell colonies, whereas hLF-transfected hLZ cells were seeded onto 100-mm culture plates (100 cells/plate) to allow colony outgrowth from individual cells. Isolated colonies were screened by PCR using specific primers for each transgene (hGC or hLF) and for hLZ and GAPDH (controls). Positive cells from one hLZ-hGC and one hLZ-hLF colony were used for cloning at passage 9, whereas hLZ cells from the other genotype were at passage 4. Cells were synchronized by high confluence and 24 h of serum starvation. Goat cloning was performed according to standard procedures (Feltrin et al. 2012 Reprod. Fertil. Dev. 25, 163). Briefly, cumulus-oocyte complexes from abattoir ovaries were in vitro-matured for 20 h. Oocyte enucleation and hLZ, hLZ-hGC, or hLZ-hLF donor cell insertion were done by micromanipulation. Reconstructed structures were fused by two 1.2-KV cm–1 DC pulses for 20 μs. Cloned embryos were cultured for 1 h in cytochalasin B and then activated in ionomycin/6-DMAP. After 12 h of in vitro culture in G-1™ medium (Vitrolife, USA), 1-cell stage embryos were transferred into the oviduct of synchronous females (Keefer et al. 2002 Biol. Reprod. 66, 199-203). Pregnancy diagnosis was performed by ultrasonography on Day 30, with weekly monitoring afterwards. Preliminary data from 6 replicates were analysed by the chi-square test (P < 0.05). Maturation rate and survival after enucleation were 42.8% (610/1425) and 72.9% (291/399), respectively. A total of 271 structures were reconstructed using the 3 donor cell lines. Fusion rates did not differ between hLZ (59.5%), hLZ-hGC (47.5%), and hLZ-hLF (48.5%) groups. A total of 68 hLZ, 92 hLZ-hGC, and 39 hLZ-hLF-derived embryos were transferred to 5, 7, and 3 recipients, respectively. No pregnancies were detected with the use of hLZ and hLZ-hLF cells. However, 3 pregnancies (one nonviable) were detected on Day 30 with hLZ-hGC cells (42.9%), with both viable pregnancies lost on Days 40 and 130 of gestation. Molecular analyses confirmed both concepti as transgenic clones from the hLZ-hGC cell line. In summary, antibiotic selection of positive colonies was effective at maintaining cell viability, with a positive response when used for cloning. Replications are in progress to evaluate the effect of cell colony isolation from individual cells (e.g. hLZ-hLF cells) on cell viability over time and on cloning outcome.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1178
Author(s):  
Justyna Odrobińska ◽  
Magdalena Skonieczna ◽  
Dorota Neugebauer

The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted copolymers containing both PEG and poly(ε-caprolactone) (PCL) side chains were applied as micellar carriers. The polymer self-assemblies were convenient to encapsulate arbutin (ARB) as the selected active substances. Moreover, the conjugates of PEG graft copolymers with ferulic acid (FA) or lipoic acid (LA) were also investigated. The permeability of released active substances through a membrane mimicking skin was evaluated by conducting transdermal tests in Franz diffusion cells. The biological response to new carriers with active substances was tested across cell lines, including normal human dermal fibroblasts (NHDF), human epidermal keratinocyte (HaCaT), as well as cancer melanoma (Me45) and metastatic human melanoma (451-Lu), for comparison. These polymer systems were safe and non-cytotoxic at the tested concentrations for healthy skin cell lines according to the MTT test. Cytometric evaluation of cell cycles as well as cell death defined by Annexin-V apoptosis assays and senescence tests showed no significant changes under action of the delivery systems, as compared to the control cells. In vitro tests confirmed the biochemical potential of these antioxidant carriers as beneficial components in cosmetic products, especially applied in the form of masks and eye pads.


2002 ◽  
Vol 183 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Gregory J. Finn ◽  
Emma Kenealy ◽  
Bernadette S. Creaven ◽  
Denise A. Egan

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2857-2857
Author(s):  
Laura Newell ◽  
Joseph Tuscano ◽  
Robert o'Donnell ◽  
Yunpeng Ma

Abstract Abstract 2857 Background: Non-Hodgkin's lymphoma (NHL) affects over 400,000 people in the United States and its incidence increases with age. Treatment options include cytotoxic chemotherapy, which is often poorly tolerated by elderly patients, and monoclonal antibody (mAb) therapy. Nearly 70% of NHL patients eventually die of the disease. Development of effective alternate treatments with favorable toxicity profiles is necessary. Fermented wheat germ extract (FWGE) has shown anticancer potential in laboratory animals as well as in some small clinical studies; it is produced under GMP conditions in Europe and sold as Avemar™. The mechanism of action of FWGE is unclear, but is thought to involve metabolic pathways involved in tumor cell death. We examined the effects of FWGE on NHL and found significant lymphomacidal activity using in vitro and in vivo assays. We then further purified and characterized the active components of FWGE in order to develop a more potent form and to understand the mechanism of action, physiologic, and immunologic properties. Methods: FWGE was produced by fermenting purified wheat germ (Triticum aestivum) with Baker's yeast. The FWGE was further purified by removing insoluble material, precipitating proteins, freeze drying, fractionating with Sepharose and Sephadex columns, and then dialyzing to remove small molecules. The resultant fermented wheat germ proteins (FWGP) were assessed for in vitro cytotoxicity and pro-apoptotic activity using a panel of NHL cell lines. In vivo lymphomacidal activity was assessed in nude mice bearing Raji lymphoma xenografts. Mice were treated with increasing daily doses of FWGE by gastric lavage and compared to untreated controls as well as the commercially available fermented wheat germ product, Avemar. Results: In vitro killing assays with FWGE (regardless of the source) demonstrated lymphomacidal properties in three NHL cell lines (Jurkat, Raji, and Ramos). Pre-treatment of FWGE with heat or proteinase K reduced the lymphomacidal activity, suggesting that the active component was a protein. Nude mice bearing Raji lymphoma xenografts treated with FWGE confirmed the lymphomacidal properties of FGWE; there was no detectable toxicity as assessed by observation, mouse weight, or blood counts. The purified low molecular weight proteins (FWGP) also demonstrated lymphomacidal properties by cytotoxicity assays and murine NHL models, but at 1/1000th of the original dose. When FWGP was combined with rituximab, there was enhanced in vitro lymphomacidal activity, with over a 4000-fold reduction in the IC50. FWGP-induced NHL cell death was mediated by caspase-3-dependent apoptosis. FWGP augmented the host immune effector mechanisms, including ADCC and CDC, along with potent activation of NK-T cells (CD3/69/16), CD4+ T-cells and monocytes. Conclusions: FWGE can be easily produced and has cytotoxic effects in in vitro assays and in vivo. The purified FWGP are quantifiable, and are 10–1000 times more potent than FWGE. The mechanism of FWGP activity is based on direct pro-apoptotic effects as well as augmentation of host immune mediators. FWGP has activity against various subtypes of NHL. Studies are ongoing to further characterize the immune effects and anti-cancer properties of FWGP, as is planning for a human clinical trial +/− rituximab in patients with NHL. Disclosure: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3493-3493
Author(s):  
Ahmad-Samer Samer Al-Homsi ◽  
Zhongbin Lai ◽  
Tara Sabrina Roy ◽  
Niholas Kouttab

Abstract Introduction Constitutive and immunoproteasome inhibitors (C&IPI) were thought to suppress nuclear factor-κB (NF-κB) pathway by preventing IκB degradation, which prevents NF-κB translocation into the nucleus. This mechanism of action has since been questioned by a number of studies. First, bortezomib promoted constitutive NF-κB activity in endothelial cell carcinoma. Second, NF-κB constitutive activity was resistant to bortezomib in multiple myeloma cell lines. Third, bortezomib increased IκB mRNA but post-transcriptionally downregulated IκB in normal cells and in multiple myeloma cell lines resulting in induced canonical NF-κB activation. Lastly, bortezomib increased nuclear levels of IκB as opposed to lowering cytoplasmic levels in cutaneous T cell lymphoma cell line suggesting that nuclear translocation of IκB was possibly responsible for NF-κB inhibition. The inhibitory activity of C&IPI on dendritic cells (DC) is of interest in the prevention of graft versus host disease (GvHD). It has been shown that different C&IPI impede DC maturation and T cell priming both in vitro and in vivo. Herein we sought to understand the mechanism of action of proteasome and immunoproteasome inhibitors on DC and to test their effect on IκB and NF-IκB expression. Materials and Methods We first performed RT PCR on lysates of DC obtained from the peripheral blood of 7 patients who received post-transplant cyclophosphamide and bortezomib as prevention of GvHD on a phase I clinical trial. Patients received allogeneic transplantation from matched-related or unrelated donors. Patients received no other immunosuppressive therapy except for rabbit anti-thymocyte globulin for those receiving graft from unrelated donor. Steroids were not allowed on the study. Samples were obtained on days +1, +4, and +7. The results were analyzed in comparison to samples obtained on day 0 before stem cell infusion. We then performed the same experiment on lysates of DC obtained from the peripheral blood of healthy volunteer donors. DC were untreated or incubated with bortezomib (10 nM for 4 h), carfilzomib (30 nM for 1 h), oprozomib (100 nM and 300 nM for 4 h), ONX 0914 (200 nM for 1 h), PR-825 (125 nM for 1 h), or PR-924 (1000 nM for 1 h). The drug concentration and duration of exposure were chosen based on the IC50 on proteasome activity and to reproduce in vivo conditions. We also performed IκB western blot on DC isolated from peripheral blood of healthy volunteers, untreated or incubated with bortezomib (10 nM for 4 h) or oprozomib (300 nM for 4 h). Each experiment was performed at least in triplicate. Results We found that the combination of cyclophosphamide and bortezomib significantly and progressively increased IκB mRNA while decreasing NF-κB mRNA in DC studied ex vivo. We also found that all studied C&IPI increased IκB mRNA to a variable degree while only oprozomib (300 nM) decreased NF-κB mRNA in DC in vitro. Finally, both bortezomib and oprozomib increased IκB protein level in DC in vitro (figure). Conclusion Our data suggest that C&IPI increase IκB expression in DC. As opposed to the previously reported data in other cell types, the effect is not associated with post-transcriptional downregulation. Cyclophosphamide and bortezomib also decrease NF-κB expression in DC in vivo while only oprozomib had the same effect in vitro. The effect of C&IPI on IκB and NF-κB expression may represent a new mechanism of action and suggests their effect may be cell-type dependent. Disclosures: Al-Homsi: Millennium Pharmaceuticals: Research Funding. Off Label Use: The use of cyclophosphamide and bortezomib for GvHD prevention. Lai:Millennium Pharmaceuticals: Research Funding.


2018 ◽  
Vol 199 ◽  
pp. 593-602 ◽  
Author(s):  
Claudio Intini ◽  
Lisa Elviri ◽  
Jaydee Cabral ◽  
Sonya Mros ◽  
Carlo Bergonzi ◽  
...  

2005 ◽  
Vol 25 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Rachel Simpson ◽  
Christopher D. Lindsay

2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Serena Fiorito ◽  
Francesco Epifano ◽  
Celine Bruyère ◽  
Robert Kiss ◽  
Salvatore Genovese

As a continuation of our ongoing studies aimed to depict the effects and mechanism of action of naturally occurring oxyprenylated phenylpropanoids and polyketides, in this paper we describe the synthesis and in vitro anti-proliferative effects of selected compounds belonging to the above cited classes of secondary metabolites on six cancer cell lines using the MTT colorimetric assay. Our study revealed that among the natural products tested, only oxyprenylated chalcones exhibited an appreciable effect (mean IC50 = 32 - 64 μM), while substituted alcohols, phenylpropenes, naphthoquinones, and aminoacid derivatives were by far less active or inactive.


Sign in / Sign up

Export Citation Format

Share Document