Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys

2003 ◽  
Vol 48 (8) ◽  
pp. 997-1002 ◽  
Author(s):  
M. Suzuki ◽  
T. Kimura ◽  
J. Koike ◽  
K. Maruyama
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1473
Author(s):  
Hao Wang ◽  
Yanping Bao ◽  
Chengyi Duan ◽  
Lu Lu ◽  
Yan Liu ◽  
...  

The influence of rare earth Ce on the deep stamping property of high-strength interstitial-free (IF) steel containing phosphorus was analyzed. After adding 120 kg ferrocerium alloy (Ce content is 10%) in the steel, the inclusion statistics and the two-dimensional morphology of the samples in the direction of 1/4 thickness of slab and each rolling process were observed and compared by scanning electron microscope (SEM). After the samples in each rolling process were treated by acid leaching, the three-dimensional morphology and components of the second phase precipitates were observed by SEM and energy dispersive spectrometer (EDS). The microstructure of the sample was observed by optical microscope, and the grain size was compared. Meanwhile, the content and strength of the favorable texture were analyzed by X-ray diffraction (XRD). Finally, the mechanical properties of the product were analyzed. The results showed that: (1) The combination of rare earth Ce with activity O and S in steel had lower Gibbs free energy, and it was easy to generate CeAlO3, Ce2O2S, and Ce2O3. The inclusions size was obviously reduced, but the number of inclusions was increased after adding rare earth. The morphology of inclusions changed from chain and strip to spherical. The size of rare earth inclusions was mostly about 2–5 μm, distributed and dispersed, and their elastic modulus was close to that of steel matrix, which was conducive to improving the structure continuity of steel. (2) The rare earth compound had a high melting point. As a heterogeneous nucleation point, the nucleation rate was increased and the solidification structure was refined. The grade of grain size of products was increased by 1.5 grades, which is helpful to improve the strength and plasticity of metal. (3) Rare earth Ce can inhibit the segregation of P element at the grain boundary and the precipitation of Fe(Nb+Ti)P phase. It can effectively increase the solid solution amount of P element in steel, improve the solid solution strengthening effect of P element in high-strength IF steel, and obtain a large proportion of {111} favorable texture, which is conducive to improving the stamping formability index r90 value.


2013 ◽  
Vol 749 ◽  
pp. 282-286
Author(s):  
Xian Hui Wang ◽  
Xiao Chun Sun ◽  
Xiao Hong Yang ◽  
Shu Hua Liang

The effect of heat treatment on the microstructure and properties of Cu-3Ti-1Al alloy was investigated. The microstructure was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the hardness and electrical conductivity were tested as well. The results showed that the hardness and electrical conductivity of Cu-3Ti-1Al alloy increased significantly after solid solution and ageing treatment. The strengthening effect of Cu-3Ti-1Al alloy was attributed to the formation of intermetallic phase such as Ti3Al and fine precipitates of coherent β-Cu4Ti. With increase of the aging time and the temperature, the precipitates became coarse and incoherent with Cu matrix, and the discontinuous precipitate β started to grow from grain boundaries toward grain interior, which decreased hardness. As the formation of Ti3Al, β-Cu3Ti and β-Cu4Ti phase can efficiently reduce Ti concentration in Cu matrix. The electrical conductivity of Cu-3Ti-1Al alloy increases. In the range of experiments, the optimal heat treatment process for Cu-3Ti-1Al alloy is solid solution at 850°C for 4h and ageing 500°C for 2h, and the hardness and electrical conductivity are 227HV and 12.3%IACS, respectively.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 785 ◽  
Author(s):  
Lin Wang ◽  
Daqian Sun ◽  
Hongmei Li ◽  
Xiaoyan Gu ◽  
Chengjie Shen

Ti3Al-Nb alloy (Ti-24Al-15Nb) was welded by a pulsed laser welding system without and with pure Nb filler metal. The results indicated that pure Nb filler metal had profound effects on the microstructures and mechanical properties of the laser-welded joints. The joint without filler metal consisted of the weld zone (α’2 + B2), heat affected zone HAZ1 (α2 + B2), HAZ2 (α2 + O + B2) and base metal (α2 + O + B2), and gas pores were generated in the weld resulting in the deterioration of the joint strength (330 MPa) and elongation (1.9%). When the Nb filler metal was used, the weld microstructure (NbTi solid solution + O + B2) was obtained, and the joint properties were significantly improved, which was associated with the strengthening effect of the NbTi solid solution, O phase precipitation and the slip transmission between O and B2 phases, and the restraining of the formation of martensite (α’2) and gas pores in the weld. The strength (724 MPa) and elongation (5.1%) of the joint increased by 119.4% and 168.4% compared with those of the joint without filler metal, and the joint strength was able to reach 81.7% of the base metal strength (886 MPa). It is favorable to use pure Nb filler metal for improving the mechanical properties of laser-welded Ti3Al-Nb alloy joints.


2021 ◽  
Vol 1016 ◽  
pp. 1386-1391
Author(s):  
Anastasia Semenyuk ◽  
Margarita Klimova ◽  
Sergey Zherebtsov ◽  
Nikita Stepanov

High entropy alloys (HEAs) with face-centered cubic (fcc) structure, namely equiatomic CoCrFeMnNi alloy, have attracted considerable attention because of impressive cryogenic mechanical properties – strength, ductility, and fracture toughness. Further increase of the properties can be achieved, for example, by proper alloying. A particularly attractive option is the addition of interstitial elements like carbon or nitrogen. In present work, a series of CoCrFeMnNi-based alloys with different amounts of C and N (0-2 at.%) was prepared by induction melting. The alloys doped with C had lower Cr content to increase the solubility of carbon in the fcc solid solution. It was revealed that the solid solution strengthening effect of both C and N is significantly increased when the testing temperature decreases from 293K to 77K. The effect of thermomechanical processing on the structure and mechanical properties of the alloys is analyzed.


1985 ◽  
Vol 53 ◽  
Author(s):  
S. Guruswamy ◽  
J.P. Hirth ◽  
K.T. Faber

ABSTRACTSubstantial solid solution strengthening of GaAs by In acting as InAs4 units has recently been predicted. This strengthening could account for the reduction of dislocation density in GaAs single crystals grown from the melt. High temperature hardness measurements up to 700ºC have been carried out on (100) GaAs and Ga0.9975 In0.0025 As wafers. Results show a significant strengthening effect in In—doped GaAs even at concentration levels of about 0.2 wt%. A temperature independent flow stress region is observed for both these alloys. The In—doped GaAs shows ahigher plateau stress level compared to the undoped GaAs. The results are consistent with the solid solution strengthening model.


2021 ◽  
Vol 99 (3) ◽  
pp. 15-22
Author(s):  
O.A. Glotka ◽  
◽  
V.Yu. Olshanetskii ◽  

The aim of this work is to obtain predictive regression models, with which it is possible to adequately calculate the mechanical properties of heat-resistant nickel alloys, without prior experiments. Industrial alloys of directional crystallization of domestic and foreign production were selected for research. The values were processed by the method of least squares to obtain correlations with the receipt of mathematical equations of regression models that optimally describe these dependencies. As a result of processing of experimental data, the ratio of alloying elements which can be used for an estimation of mechanical properties taking into account complex influence of the main components of an alloy is offered for the first time. Since the dimensional mismatch of the lattice parameters is associated with the degree of concentration of solid-soluble hardening of γ- and γ'-phases, the efficiency of dispersion hardening of the alloy, creep rate and other properties, the obtained ratio allows to link these properties with multicomponent systems. Regression models are presented, with the help of which it is possible to calculate dimensional mismatch, strength, heat resistance, number of  phases and density of alloys with high accuracy. The regularities of the composition influence on the properties of heat-resistant nickel alloys of directional crystallization are established. It is shown that for multicomponent nickel systems it is possible to predict with high probability misfit, which significantly affects the strength characteristics of alloys of this class. The decrease in the value of misfit is accompanied by an increase in the solubility of the elements in the -solid solution at a value of the ratio of alloying elements of 1.5 - 1.6. However, an increase in the ratio of alloying elements greater than 2 is accompanied by an increase in misfit, because the -solid solution has reached a maximum of dissolution. The perspective and effective direction in the decision of a problem of forecasting of the basic characteristics influencing a complex of service properties of alloys both at development of new heat-resistant nickel alloys, and at perfection of structures of known industrial marks of this class is shown. Keywords: nickel-based superalloys, dimensional mismatch (γ / γ'- mismatch), strength, heat resistance.


2011 ◽  
Vol 479 ◽  
pp. 22-26 ◽  
Author(s):  
Guo Jun Zhang ◽  
Yi Zhao ◽  
Bin Li ◽  
Rui Hong Wang ◽  
Gang Lui ◽  
...  

The molybdenum alloy sheets composite strengthened by silicon and lanthanum oxide were prepared by powder metallurgy technology with Mo-La2O3(0.3wt%) and Si(0, 0.1, 0.3wt%) powders and thermo-mechanically processing. The influences of silicon content on the microstructure and mechanical properties of the final molybdenum alloy sheets were tested and analysized. The results show that the addition of lanthanum oxide and silicon can refine the alloys grain size. The introduction of lanthanum oxide particles can increase the yield strength. Although the molybdenum alloys with 0.3wt% silicon have solid solution strengthening effect, the alloys with 0.1 wt% silicon exhibits obvious solid solution softening effect at room temperature. The strengthening mechanisms are quantitatively assessed, which well explain the increase or decrease in yield strength with respect to grain size, lanthanum oxide particle and silicon solid solution.


1994 ◽  
Vol 364 ◽  
Author(s):  
Tohru Takahashi ◽  
Tadashi Hasegawa

AbstractTwo types of aluminum–titanium–iron–vanadium ( Al–Ti–Fe–V ) quarternary intermetallic compounds have been prepared by arc melting under argon atmosphere. Their compositions were nominally Al66Ti25Fe6V3 and Al66Ti25Fe3V6. These alloys are based on the iron–modified titanium trialuminide with L12 cubic structure. Vanadium addition up to about 6 mol% did not destroy the cubic symmetry, and L12 solid solution compounds were produced in these two Al–Ti–Fe–V quarternary alloys. Microstructure and mechanical properties have been investigated. It has been demonstrated that vanadium addition to iron–modified L12 titanium trialuminides can enhance their strength.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1444
Author(s):  
Haobo Mao ◽  
Fuqiang Shen ◽  
Yingyi Zhang ◽  
Jie Wang ◽  
Kunkun Cui ◽  
...  

TiC ceramics have become one of the most potential ultra-high temperature structural materials, because of its high melting point, low density, and low price. However, the poor mechanical properties seriously limit its development and application. In this work, this review follows PRISMA standards, the mechanism of the second phase (particles, whiskers, and carbon nanotubes) reinforced TiC ceramics was reviewed. In addition, the effects of the second phase on the microstructure, phase composition and mechanical properties of TiC ceramics were systematically studied. The addition of carbon black effectively eliminates the residual TiO2 in the matrix, and the bending strength of the matrix is effectively improved by the strengthening bond formed between TiC; SiC particles effectively inhibit the grain growth through pinning, the obvious crack deflection phenomenon is found in the micrograph; The smaller grain size of WC plays a dispersion strengthening role in the matrix and makes the matrix uniformly refined, and the addition of WC forms (Ti, W) C solid solution, WC has a solid solution strengthening effect on the matrix; SiC whiskers effectively improve the fracture toughness of the matrix through bridging and pulling out, the microscopic diagram and mechanism diagram of SiC whisker action process are shown in this paper. The effect of new material carbon nanotubes on the matrix is also discussed; the bridging effect of CNTs can effectively improve the strength of the matrix, during sintering, some CNTs were partially expanded into GNR, in the process of crack bridging and propagation, more fracture energy is consumed by flake GNR. Finally, the existing problems of TiC-based composites are pointed out, and the future development direction is prospected.


Sign in / Sign up

Export Citation Format

Share Document