Protective effects of extracts of Schisandra chinensis stems against acetaminophen-induced hepatotoxicity via regulation of MAPK and caspase-3 signaling pathways

2018 ◽  
Vol 16 (9) ◽  
pp. 700-713 ◽  
Author(s):  
Yan-Zi LI ◽  
Zhi-Na MA ◽  
Yin-Shi SUN ◽  
Shen REN ◽  
Shuang JIANG ◽  
...  
2019 ◽  
Vol 109 ◽  
pp. 47-56 ◽  
Author(s):  
Emad H.M. Hassanein ◽  
Abdel-Gawad S. Shalkami ◽  
Marwa M. Khalaf ◽  
Wafaa R. Mohamed ◽  
Ramadan A.M. Hemeida

2021 ◽  
Vol 85 (3) ◽  
pp. 520-527
Author(s):  
Zhongyang Ding ◽  
Ying Li ◽  
Zhangfeng Tang ◽  
Xiaoyi Song ◽  
Fa Jing ◽  
...  

ABSTRACT The purpose of this study is to investigate the protective effect of gambogenic acid (GA) in acetaminophen (APAP)-induced hepatotoxicity in rat models. GA (10 mg/kg) was administered intraperitoneal (i.p.) to rats for 7 consecutive days followed by APAP (500 mg/kg) single dose (i.p.) on the final day after GA administration. The levels of MDA, GSH, SOD, CAT, GPx, GST, ALP, AST, ALT, proinflammatory cytokines (TNF-α, IL-1β, IL-6), apoptosis markers (caspase-3 and -9, Bax, Bcl-2), 4-hydroxynonenal (4-HNE), and prostaglandin E2 (PGE2) were evaluated. Results exhibited protective effects of GA by inhibiting inflammation, preventing oxidative stress and apoptosis in APAP-induced liver. Histopathological changes caused by APAP were attenuated, protein expressions of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) were upregulated, and nuclear factor–kappa β (NF-kβ) was downregulated by GA. In summary, GA significantly exerted anti-inflammatory and antiapoptotic effects against APAP-induced hepatotoxicity potentially through regulation of PI3K/Akt and NF-kβ signaling pathways.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Meibian Hu ◽  
Yujie Liu ◽  
Liying He ◽  
Xing Yuan ◽  
Wei Peng ◽  
...  

Bombyx batryticatus is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, and purpura in China for thousands of years. This study is aimed at investigating the antiepileptic effects of protein-rich extracts from Bombyx batryticatus (BBPs) on seizure in mice and exploring the protective effects of BBPs against H2O2-induced oxidative stress in PC12 cells and their underlying mechanisms. Maximal electroshock-induced seizure (MES) and pentylenetetrazole- (PTZ-) induced seizure in mice and the histological analysis were carried out to evaluate the antiepileptic effects of BBPs. The cell viability of PC12 cells stimulated by H2O2 was determined by MTT assay. The apoptosis and ROS levels of H2O2-stimulated PC12 cells were determined by flow cytometry analysis. Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), and glutathione (GSH) in PC12 cells were assayed by ELISA and expressions of caspase-3, caspase-9, Bax, Bcl-2, PI3K, Akt, and p-Akt were evaluated by Western blotting and quantitative real-time polymerase chain reaction (RT-qPCR) assays. The results revealed that BBPs exerted significant antiepileptic effects on mice. In addition, BBPs increased the cell viability of H2O2-stimulated PC12 cells and reduced apoptotic cells and ROS levels in H2O2-stimulated PC12 cells. By BBPs treatments, the levels of MDA and LDH were reduced and the levels of SOD and GSH-Px were increased in H2O2-stimulated PC12 cells. Moreover, BBPs upregulated the expressions of PI3K, Akt, p-Akt, and Bcl-2, whereas they downregulated the expressions of caspase-9, caspase-3, and Bax in H2O2-stimulated PC12 cells. These findings suggested that BBPs possessed potential antiepileptic effects on MES and PTZ-induced seizure in mice and protective effects on H2O2-induced oxidative stress in PC12 cells by exerting antioxidative and antiapoptotic effects via PI3K/Akt signaling pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingyan Yao ◽  
Jing Zhang ◽  
Zhihong Li ◽  
Xiaoliang Bai ◽  
Jinhui Ma ◽  
...  

Background and Objective: Diabetes mellitus (DM) is reportedly a significant risk factor for intervertebral disc degeneration (IDD). Incretin system and particularly glucagon-like peptide 1 (GLP-1) because of its glucose-lowering effects has become an important target in therapeutic strategies of type 2 diabetes (T2D). Liraglutide is a GLP-1 receptor (GLP-1R) agonist with glucoregulatory and insulinotropic functions as well as regulatory functions on cell proliferation, differentiation, and apoptosis. However, little is known on the roles and signaling pathways of apoptosis protecting effects of liraglutide in IDD. This study aimed to investigate the potential protective effects of liraglutide against high glucose-induced apoptosis of nucleus pulposus cells (NPCs) and the possible involved signaling pathways.Methods: The human NPCs were incubated with 100 nM liraglutide alone or in combination with LY294002 (PI3K inhibitor), rapamycin (mTOR inhibitor), and SB216763 (GSK3β inhibitor) in a high glucose culture for 48 h. The four groups were assessed further for apoptosis and genes expressions. The apoptotic effect was evaluated by flow cytometry and further confirmed by cell death detection enzyme-linked immunoassay plus (ELISAPLUS). The gene and protein expression levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting techniques. The results were comparatively assessed between the four groups.Results: The results confirmed the presence of GLP-1R in the NPCs indicating that liraglutide inhibited the high glucose-induced apoptosis, which was blocked by silencing GLP-1R with siRNA. Moreover, liraglutide stimulated the phosphorylation of Akt, mTOR and GSK3β. Treatment with LY294002 significantly increased the apoptosis of NPCs and reduced the levels of their downstream substrates (p-AKT, p-mTOR, and p-GSK3β). Further assessments revealed that activation of mTOR and GSK3β was almost completely inhibited by rapamycin and SB216763, respectively, which significantly increased the caspase-3 levels.Conclusion: Liraglutide could protect NPCs against high glucose-induced apoptosis by activating the PI3K/AKT/mTOR/caspase-3 and PI3K/AKT/GSK3β/caspase-3 signaling pathways.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Anca Ungurianu ◽  
Anca Zanfirescu ◽  
Georgiana Nițulescu ◽  
Denisa Margină

Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.


2015 ◽  
Vol 93 (8) ◽  
pp. 625-631 ◽  
Author(s):  
Yan Hu ◽  
Ning Zhang ◽  
Qing Fan ◽  
Musen Lin ◽  
Ce Zhang ◽  
...  

Carnosic acid (CA), found in rosemary, has been reported to have antioxidant and antiadipogenic properties. Here, we investigate the molecular mechanism by which CA inhibits hydrogen peroxide (H2O2)-induced injury in HepG2 cells. Cells were pretreated with 2.5–10 μmol/L CA for 2 h and then exposed to 3 mmol/L H2O2 for an additional 4 h. CA dose-dependently increased cell viability and decreased lactate dehydrogenase activities. Pretreatment with CA completely attenuated the inhibited expression of manganese superoxide dismutase (MnSOD) and the B-cell lymphoma-extra large (Bcl-xL), and reduced glutathione activity caused by H2O2, whereas it reversed reactive oxygen species accumulation and the increase in cleaved caspase-3. Importantly, sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, was significantly increased by CA. Considering the above results, we hypothesized that SIRT1 may play important roles in the protective effects of CA in injury induced by H2O2. As expected, SIRT1 suppression by Ex527 (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) and siRNA-mediated SIRT1 silencing (si-SIRT1) significantly aggravated the H2O2-induced increased level of cleaved caspase-3 but greatly reduced the decreased expression of MnSOD and Bcl-xL. Furthermore, the positive regulatory effect of CA was inhibited by si-SIRT1. Collectively, the present study indicated that CA can alleviate H2O2-induced hepatocyte damage through the SIRT1 pathway.


2021 ◽  
Author(s):  
Mariana Camargo Silva Mancini ◽  
Luis Gustavo Saboia Ponte ◽  
Cayo Henrique Rocha Silva ◽  
Isabella Fagundes ◽  
Isadora Carolina Betim Pavan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document