scholarly journals Fluid–structure interaction of a square cylinder at different angles of attack

2014 ◽  
Vol 747 ◽  
pp. 688-721 ◽  
Author(s):  
Jisheng Zhao ◽  
Justin S. Leontini ◽  
David Lo Jacono ◽  
John Sheridan

AbstractThis study investigates the free transverse flow-induced vibration (FIV) of an elastically mounted low-mass-ratio square cylinder in a free stream, at three different incidence angles: ${{\alpha }}=0^\circ $, $20^\circ $ and $45^\circ $. This geometric setup presents a body with an angle of attack, sharp corners and some afterbody, and therefore is a generic body that can be used to investigate a wide range of FIV phenomena. A recent study by Nemes et al. (J. Fluid Mech., vol. 710, 2012, pp. 102–130) provided a broad overview of the flow regimes present as a function of both the angle of attack ${{\alpha }}$ and reduced flow velocity ${U^{*}}$. Here, the focus is on the three aforementioned representative angles of attack: ${{\alpha }}=0^\circ $, where the FIV is dominated by transverse galloping; ${{\alpha }}=45^\circ $, where the FIV is dominated by vortex-induced vibration (VIV); and an intermediate value of ${{\alpha }}=20^\circ $, where the underlying FIV phenomenon has previously been difficult to determine. For the ${{\alpha }}=0^\circ $ case, the amplitude of oscillation increases linearly with the flow speed except for a series of regimes that occur when the vortex shedding frequency is in the vicinity of an odd-integer multiple of the galloping oscillation frequency, and the vortex shedding synchronizes to this multiple of the oscillation frequency. It is shown that only odd-integer multiple synchronizations should occur. These synchronizations explain the ‘kinks’ in the galloping amplitude response for light bodies first observed by Bearman et al. (J. Fluids Struct., vol. 1, 1987, pp. 19–34). For the ${{\alpha }}=45^\circ $ case, the VIV response consists of a number of subtle, but distinctly different regimes, with five regimes of high-amplitude oscillations, compared to two found in the classic VIV studies of a circular cylinder. For the intermediate ${{\alpha }}=20^\circ $ case, a typical VIV ‘upper branch’ occurs followed by a ‘higher branch’ of very large-amplitude response. The higher branch is caused by a subharmonic synchronization between the vortex shedding and the body oscillation frequency, where two cycles of vortex shedding occur over one cycle of oscillation. It appears that this subharmonic synchronization is a direct result of the asymmetric body. Overall, the FIV of the square cylinder is shown to be very rich, with a number of distinct regimes, controlled by both ${{\alpha }}$ and ${U^{*}}$. Importantly, ${{\alpha }}$ controls the underlying FIV phenomenon, as well as controlling the types of possible synchronization between the oscillation and vortex shedding.

Author(s):  
C.M Leong ◽  
T Wei

In this study, we investigated two-degree-of-freedom (2d.f.) vortex-induced vibrations (VIVs) of a circular cylinder with a pinned attachment at its base; it had identical mass ratios and natural frequencies in both streamwise and transverse directions. The cylinder had a mass ratio, m * of 0.45, and a mass damping, ( m * + C A ) ζ , equal to 0.0841. Laser-induced fluorescence flow visualization and digital particle image velocimetry experiments were conducted over a Reynolds number range, 820≤ Re ≤6050 (corresponding to the reduced velocity range, 1.1≤ U * ≤8.3). Measurements and visualization studies were made in a fixed plane at the cylinder mid-height, providing a two-dimensional picture of a highly three-dimensional system. However, significant insights can be gained from these experiments and form the basis of this paper. A large transverse amplitude response, (or four diameters peak-to-peak), in the upper branch was observed. The streamwise amplitude response exhibits an even higher peak amplitude, , which is approximately 125% of peak . Results show that there is no lower branch for this system and the transverse upper branch exhibits asymptotic behaviour, i.e. a wide regime of resonance. For Re >3000, the Strouhal number for the vortex shedding was 0.16 (±9%). Both the transverse cylinder oscillation and vortex-shedding frequencies, f OS, Y and f VS , respectively, were virtually identical throughout this range. While the streamwise oscillation frequency is typically twice the transverse oscillation frequency for a 2d.f. system, this is not the case at the lowest reduced velocities where oscillations first occur. Under these conditions the streamwise and transverse oscillation frequencies were identical. Finally, we observed that the cylinder wake exhibits both the P+S vortex-shedding mode and a desynchronized vortex pattern, which are uncommon for flow past a cylinder experiment. Very interestingly, the wide U * range over which resonance occurs is dominated by a desynchronized vortex pattern. These results clearly demonstrate the differences that arise in 2d.f. VIV occurring below the critical mass ratio.


2007 ◽  
Vol 574 ◽  
pp. 169-178 ◽  
Author(s):  
SIMONE CAMARRI ◽  
FLAVIO GIANNETTI

This paper considers the incompressible two-dimensional laminar flow around a square cylinder symmetrically positioned in a channel. In this type of flow, even if vortices of opposite sign are alternately shed from the body into the wake as in the unconfined case, an inversion of their position with respect to the flow symmetry line takes place further downstream. A numerical analysis is carried out to investigate the physical origin of this phenomenon and to characterize the position in the wake at which the vortices cross the symmetry line. It is shown that, for low to moderate blockage ratios, the fundamental cause of the inversion of the vortices is the amount of vorticity present in the incoming flow, and a dynamic interpretation in terms of vorticity interference in the wake is given. Further insight is gained through a linear stability analysis of the vortex shedding instability.


2001 ◽  
Vol 204 (15) ◽  
pp. 2741-2750 ◽  
Author(s):  
Kirsty J. Park ◽  
Mikael Rosén ◽  
Anders Hedenström

SUMMARYTwo barn swallows (Hirundo rustica) flying in the Lund wind tunnel were filmed using synchronised high-speed cameras to obtain posterior, ventral and lateral views of the birds in horizontal flapping flight. We investigated wingbeat kinematics, body tilt angle, tail spread and angle of attack at speeds of 4–14ms−1. Wingbeat frequency showed a clear U-shaped relationship with air speed with minima at 8.9ms−1(bird 1) and 8.7ms−1 (bird 2). A method previously used by other authors of estimating the body drag coefficient (CD,par) by obtaining agreement between the calculated minimum power (Vmin) and the observed minimum wingbeat frequency does not appear to be valid in this species, possibly due to upstroke pauses that occur at intermediate and high speeds, causing the apparent wingbeat frequency to be lower. These upstroke pauses represent flap-gliding, which is possibly a way of adjusting the force generated to the requirements at medium and high speeds, similar to the flap-bound mode of flight in other species. Body tilt angle, tail spread and angle of attack all increase with decreasing speed, thereby providing an additional lift surface and suggesting an important aerodynamic function for the tail at low speeds in forward flight. Results from this study indicate the high plasticity in the wingbeat kinematics and use of the tail that birds have available to them in order to adjust the lift and power output required for flight.


Author(s):  
C. J. Pregnalato ◽  
K. Ryan ◽  
M. C. Thompson ◽  
K. Hourigan

One of the most basic examples of fluid-structure interaction is provided by a tethered cylinder or sphere in a fluid flow. The tendency of a tethered sphere to oscillate when excited by waves is a well-known phenomenon and it has only recently been found that the same system will act in a similar fashion when exposed to a uniform flow at moderate Reynolds numbers, with a transverse peak-to-peak amplitude of approximately two diameters over a wide range of velocities. The present paper presents results of DNS of the flow past a tethered cylinder. The coupled Navier-Stokes equations and the equations of motion of the cylinder are solved using a spectral element method. The fluid forces acting on the cylinder as well as the tension in the tether are computed and used to determine the resulting motion of the object. It is found that the mean amplitude response is greatest at high reduced velocities, i.e. when the cylinder is oscillating predominantly transverse to the fluid flow. Furthermore, the oscillation frequency is found to correspond to the vortex shedding frequency of a stationary cylinder, except at high reduced velocities. This is in contrast to a tethered sphere in which the oscillation frequency does not correspond to either the vortex shedding frequency or the natural frequency. Visualizations of the vortex structures in the wake reveal the mechanisms behind the motion of the cylinder, and suggest that the induced oscillations are highly significant in the prediction of cylinder response in a steady flow.


Author(s):  
G. M. Spooner

1. The most noticeable response of marine plankton to light, under laboratory conditions, is the formation of groups on the lighted (or opposite) side of the vessel containing them.2. Specimens from such groups were tested under different conditions of illumination, and in all cases they moved in the direction of the light quite irrespective of accompanying changes of intensity in the surroundings.3. Groups form around the line of direction of the light, or the resultant direction when the light is scattered or falling from more directions than one, this being the direct result of individuals moving along the mean path of incidence of the light.4. The behaviour of individuals was examined more closely to distinguish between the two possible ways in which the directed movement could have been brought about, viz. (i) reactions to bilateral inequalities of illumination (here called “true topotaxis”), and (ii) reactions to changes in total illumination of light-receptors (a type of “phobotaxis”). For a number of species it was clearly a case of “true topotaxis,” and very probably for at least the majority of the rest.5. In two very different cases, namely, Acartia clausi and Poecilochaetus serpens, there was no orientation of the body, but nevertheless efficient orientation of the path of movement. It is believed that this is the first occasion on which such behaviour has been described.6. The observations described point to the fact that movement in the direction of incidence of the light, however this may be affected, is general among a wide range of the smaller, free-living, bilaterally symmetrical, marine animals, and would tend to dominate other possible response to light. This behaviour on the part of individuals provides a substantial basis for attempted explanations of the correlations, that have been demonstrated by ecological workers, between the vertical distribution of populations and light-intensity.


2020 ◽  
Vol 2 (4) ◽  
pp. 14-31
Author(s):  
Élodie Dupey García

This article explores how the Nahua of late Postclassic Mesoamerica (1200–1521 CE) created living and material embodiments of their wind god constructed on the basis of sensory experiences that shaped their conception of this divinized meteorological phenomenon. In this process, they employed chromatic and design devices, based on a wide range of natural elements, to add several layers of meaning to the human, painted, and sculpted supports dressed in the god’s insignia. Through a comparative examination of pre-Columbian visual production—especially codices and sculptures—historical sources mainly written in Nahuatl during the viceregal period, and ethnographic data on indigenous communities in modern Mexico, my analysis targets the body paint and shell jewelry of the anthropomorphic “images” of the wind god, along with the Feathered Serpent and the monkey-inspired embodiments of the deity. This study identifies the centrality of other human senses beyond sight in the conception of the wind god and the making of its earthly manifestations. Constructing these deity “images” was tantamount to creating the wind because they were intended to be visual replicas of the wind’s natural behavior. At the same time, they referred to the identity and agency of the wind god in myths and rituals.


Author(s):  
Shigehiro SAKAMOTO ◽  
Akashi MOCHIDA ◽  
Shuzo MURAKAMI ◽  
Wolfgang RODI

Dermatology ◽  
2021 ◽  
pp. 1-9
Author(s):  
María Luisa Peralta-Pedrero ◽  
Denisse Herrera-Bringas ◽  
Karla Samantha Torres-González ◽  
Martha Alejandra Morales-Sánchez ◽  
Fermín Jurado Santa-Cruz ◽  
...  

<b><i>Background:</i></b> Vitiligo has an unpredictable course and a variable response to treatment. Furthermore, the improvement of some vitiligo lesions cannot be considered a guarantee of a similar response to the other lesions. Instruments for patient-reported outcome measures (PROM) can be an alternative to measure complex constructions such as clinical evolution. <b><i>Objective:</i></b> The aim of this study was to validate a PROM that allows to measure the clinical evolution of patients with nonsegmental vitiligo in a simple but standardized way that serves to gather information for a better understanding of the disease. <b><i>Methods:</i></b> The instrument was created through expert consensus and patient participation. For the validation study, a prospective cohort design was performed. The body surface area affected was measured with the Vitiligo Extension Score (VES), the extension, the stage, and the spread by the evaluation of the Vitiligo European Task Force assessment (VETFa). Reliability was determined with test-retest, construct validity through hypothesis testing, discriminative capacity with extreme groups, and response capacity by comparing initial and final measurements. <b><i>Results:</i></b> Eighteen semi-structured interviews and 7 cognitive interviews were conducted, and 4 dermatologists were consulted. The instrument Clinical Evolution-Vitiligo (CV-6) was answered by 119 patients with a minimum of primary schooling. A wide range was observed in the affected body surface; incident and prevalent cases were included. The average time to answer the CV-6 was 3.08 ± 0.58 min. In the test-retest (<i>n</i> = 53), an intraclass correlation coefficient was obtained: 0.896 (95% CI 0.82–0.94; <i>p</i> &#x3c; 0.001). In extreme groups, the mean score was 2 (2–3) and 5 (4–6); <i>p</i> &#x3c; 0.001. The initial CV-6 score was different from the final one and the change was verified with VES and VETFa (<i>p</i> &#x3c; 0.05, <i>n</i> = 92). <b><i>Conclusions:</i></b> The CV-6 instrument allows patient collaboration, it is simple and brief, and it makes it easier for the doctor to focus attention on injuries that present changes at the time of medical consultation.


1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


Sign in / Sign up

Export Citation Format

Share Document