scholarly journals Vortices, dissipation and flow transition in volatile binary drops

2014 ◽  
Vol 749 ◽  
pp. 649-665 ◽  
Author(s):  
R. Bennacer ◽  
K. Sefiane

AbstractDespite its fundamental and practical relevance, flow structure and evolution within volatile mixture drops remains largely unexplored. We study experimentally, using particle image velocimetry (PIV), the evolution of internal flow during the evaporation of ethanol–water mixture drops for different initial concentrations. The investigation revealed the existence of three stages in the evolving flow behaviour within these binary volatile drops. We propose an analysis of the nature of the flow and focus on understanding successive flow stages as well as transition from multiple vortices to a monotonic outward flow. We show that the existence of multiple vortices during the first stage is driven by local concentration gradients along the interface. When the more volatile component (in this case ethanol) is depleted, the intensity of this Marangoni flow abruptly declines. Towards the end of the first stage, ethanol is driven from the bulk of the drop to the interface to sustain weakening concentration gradients. Once these gradients are too weak, the solutal Marangoni number becomes sub-critical and the driving force for the flow switches off. The evolution of flow structure and transition between stages is found to be well correlated with the ratio of Marangoni and Reynolds numbers. Furthermore, we argue that whilst the observed vortices are driven by surface tension shear stress originating at the liquid/vapour interface, the transition in flow and its dynamics is entirely determined by viscous dissipation. The comparison between the analytical expression for vorticity decay based on viscous dissipation and the experimental data shows a very good agreement. The analysis also shows that regardless of the initial concentration, for same sized drops, the transition in flow follows exactly the same trend. This further supports the hypothesis of a viscous dissipation transition of the flow. The last stage is satisfactorily explained based on non-uniform evaporation and continuity-driven flow.

Author(s):  
Qiong Wu ◽  
Qian Ye ◽  
GuoXiang Meng

In this article, particle image velocimetry was used to measure the two-dimensional flow field for vortex gripper. The vortex gripper was divided into two parts for respective research, including vortex cup and the gas film gap. In the part of vortex cup, the tangential velocity increases gradually, and the velocity decreases intensely in the vicinity of the vortex cup’s wall after it reaches maximum. In addition, the velocity decreases gradually with the increase of the gas film gap. In the part of gas film gap, the tangential velocity increases to maximum along the radial direction first; after the air flows into the gas film gap due to the viscous impedance, it decreases gradually. When the gas film gap’s thickness is smaller, the velocity almost decreases to zero at the external edge of the skirt. However, when the gas film gap increases to a certain thickness, the velocity does not decrease to zero, and the flow air still keeps a certain speed out of it. The velocity decreases gradually with the increase of the gas film gap. The radial velocity in the vortex cup and the gas film gap is of very small order of magnitude comparing with the average velocity and tangential velocity. The analysis of the Reynolds number shows that the flow in the vortex cup is the turbulent flow, and at the part of the gas film gap, the Reynolds number increases with the increase of the gas film gap, and the flow changes from the laminar flow to the turbulent flow. Through the particle image velocimetry experiment, the vortex gripper’s internal flow structure is studied. It is the theory support of the computational fluid dynamics simulation study for vortex gripper and the structure optimization in the future work.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


2021 ◽  
Vol 11 (13) ◽  
pp. 6111
Author(s):  
He Li ◽  
Xiaodong Wang ◽  
Jiuxin Ning ◽  
Pengfei Zhang ◽  
Hailong Huang

This paper investigated the effect of air leaking into the working fluid on the performance of a steam ejector. A simulation of the mixing of air into the primary and secondary fluids was performed using CFD. The effects of air with a 0, 0.1, 0.3 and 0.5 mass fraction on the entrainment ratio and internal flow structure of the steam ejector were studied, and the coefficient distortion rates for the entrainment ratios under these air mass fractions were calculated. The results demonstrated that the air modified the physical parameters of the working fluid, which is the main reason for changes in the entrainment ratio and internal flow structure. The calculation of the coefficient distortion rate of the entrainment ratio illustrated that the air in the primary fluid has a more significant impact on the change in the entrainment ratio than that in the secondary fluid under the same air mass fraction. Therefore, the air mass fraction in the working fluid must be minimized to acquire a precise entrainment ratio. Furthermore, this paper provided a method of inspecting air leakage in the experimental steam ejector refrigeration system.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 118
Author(s):  
Kseniia Kuzmina ◽  
Ilia Marchevsky ◽  
Irina Soldatova ◽  
Yulia Izmailova

The possibilities of applying the pure Lagrangian vortex methods of computational fluid dynamics to viscous incompressible flow simulations are considered in relation to various problem formulations. The modification of vortex methods—the Viscous Vortex Domain method—is used which is implemented in the VM2D code developed by the authors. Problems of flow simulation around airfoils with different shapes at various Reynolds numbers are considered: the Blasius problem, the flow around circular cylinders at different Reynolds numbers, the flow around a wing airfoil at the Reynolds numbers 104 and 105, the flow around two closely spaced circular cylinders and the flow around rectangular airfoils with a different chord to the thickness ratio. In addition, the problem of the internal flow modeling in the channel with a backward-facing step is considered. To store the results of the calculations, the POD technique is used, which, in addition, allows one to investigate the structure of the flow and obtain some additional information about the properties of flow regimes.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


1999 ◽  
Vol 122 (2) ◽  
pp. 375-385 ◽  
Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall heat flux boundary condition) using infrared thermography in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20,000. Bulk helical flow is produced in each chamber by two inlets, which are tangent to the swirl chamber circumference. Important changes to local and globally averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tied to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Go¨rtler vortex pair trajectories greater skewness as they are advected downstream of each inlet. [S0889-504X(00)00502-X]


2004 ◽  
Vol 126 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Brandon S. Field ◽  
Eric Loth

A downward blowing isothermal wall jet at moderate Reynolds numbers (1,500 to 8,500) with significant inflow turbulence (ca. 6%) was investigated. The flow configuration is an idealization of the air curtains of refrigerated display cases. Flow visualization using particle seeding was employed to identify the flow field eddy dynamics. Particle Image Velocimetry was used to examine the velocity fields in terms of mean and fluctuating values. These diagnostics showed that the air curtain entrainment was dominated by a large variety of eddies that engulfed ambient air into the air curtain. The velocity fields generally showed linear spreading, significant deceleration and high turbulence levels (ca. 25%). It was observed that the air curtain dynamics, velocity fields and growth were not significantly sensitive to Reynolds number variation between Re=3,800 and Re=8,500. However, at low air velocities (Re=1,500), the curtain was found to detach, leading to a large air curtain thickness and high curtain entrainment.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


Sign in / Sign up

Export Citation Format

Share Document