scholarly journals An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow

2017 ◽  
Vol 828 ◽  
pp. 779-811 ◽  
Author(s):  
G. L. Wagner ◽  
G. Ferrando ◽  
W. R. Young

We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.

1993 ◽  
Vol 251 ◽  
pp. 21-53 ◽  
Author(s):  
Sergei I. Badulin ◽  
Victor I. Shrira

The propagation of guided internal waves on non-uniform large-scale flows of arbitrary geometry is studied within the framework of linear inviscid theory in the WKB-approximation. Our study is based on a set of Hamiltonian ray equations, with the Hamiltonian being determined from the Taylor-Goldstein boundary-value problem for a stratified shear flow. Attention is focused on the fundamental fact that the generic smooth non-uniformities of the large-scale flow result in specific singularities of the Hamiltonian. Interpreting wave packets as particles with momenta equal to their wave vectors moving in a certain force field, one can consider these singularities as infinitely deep potential holes acting quite similarly to the ‘black holes’ of astrophysics. It is shown that the particles fall for infinitely long time, each into its own ‘black hole‘. In terms of a particular wave packet this falling implies infinite growth with time of the wavenumber and the amplitude, as well as wave motion focusing at a certain depth. For internal-wave-field dynamics this provides a robust mechanism of a very specific conservative and moreover Hamiltonian irreversibility.This phenomenon was previously studied for the simplest model of the flow non-uniformity, parallel shear flow (Badulin, Shrira & Tsimring 1985), where the term ‘trapping’ for it was introduced and the basic features were established. In the present paper we study the case of arbitrary flow geometry. Our main conclusion is that although the wave dynamics in the general case is incomparably more complicated, the phenomenon persists and retains its most fundamental features. Qualitatively new features appear as well, namely, the possibility of three-dimensional wave focusing and of ‘non-dispersive’ focusing. In terms of the particle analogy, the latter means that a certain group of particles fall into the same hole.These results indicate a robust tendency of the wave field towards an irreversible transformation into small spatial scales, due to the presence of large-scale flows and towards considerable wave energy concentration in narrow spatial zones.


2019 ◽  
Vol 12 (8) ◽  
pp. 3725-3743 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future environments using the global Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select 10 simulation years with varying phases of El Niño–Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analyzed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most Northern Hemisphere basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemisphere phenomena, and, more generally, the utility of MPAS-A for studying climate change at spatial scales generally unachievable in GCMs.


2010 ◽  
Vol 23 (21) ◽  
pp. 5755-5770 ◽  
Author(s):  
Thomas M. Smith ◽  
Phillip A. Arkin ◽  
Mathew R. P. Sapiano ◽  
Ching-Yee Chang

Abstract A monthly reconstruction of precipitation beginning in 1900 is presented. The reconstruction resolves interannual and longer time scales and spatial scales larger than 5° over both land and oceans. Because of different land and ocean data availability, the reconstruction combines two separate historical reconstructions. One analyzes interannual variations directly by fitting gauge-based anomalies to large-scale spatial modes. This direct reconstruction is used for land anomalies and interannual oceanic anomalies. The other analyzes annual and longer variations indirectly from correlations with analyzed sea surface temperature and sea level pressure. This indirect reconstruction is used for oceanic variations with time scales longer than interannual. In addition, a method of estimating reconstruction errors is also presented. Over land the reconstruction is a filtered representation of the gauge data with data gaps filled. Over oceans the reconstruction gives an estimate of the atmospheric response to changing temperature and pressure, combined with interannual variations. The reconstruction makes it possible to evaluate global precipitation variations for periods much longer than the satellite period, which begins in 1979. Evaluations show some large-scale similarities with coupled model precipitation variations over the twentieth century, including an increasing tendency over the century. The reconstructed land and sea trends tend to be out of phase at low latitudes, similar to the out-of-phase relationship for interannual variations. This reconstruction may be used for climate monitoring, for statistical climate studies of the twentieth century, and for helping to evaluate dynamic climate models. In the future the possibility of improving the reconstruction will be explored by further improving the analysis methods and including additional data.


2012 ◽  
Vol 699 ◽  
pp. 153-173 ◽  
Author(s):  
E. Danioux ◽  
J. Vanneste ◽  
P. Klein ◽  
H. Sasaki

AbstractThe spontaneous generation of inertia-gravity waves (IGWs) by surface-intensified, nearly balanced motion is examined using a high-resolution simulation of the primitive equations in an idealized oceanic configuration. At large scale and mesoscale, the dynamics, which is driven by baroclinic instability near the surface, is balanced and qualitatively well described by the surface quasi-geostrophic model. This however predicts an increase of the Rossby number with decreasing spatial scales and, hence, a breakdown of balance at small scale; the generation of IGWs is a consequence of this breakdown. The wave field is analysed away from the surface, at depths where the associated vertical velocities are of the same order as those associated with the balanced motion. Quasi-geostrophic relations, the omega equation in particular, prove sufficient to separate the IGWs from the balanced contribution to the motion. A spectral analysis indicates that the wave energy is localized around dispersion relation for free IGWs, and decays only slowly as the frequency and horizontal wavenumber increase. The IGW generation is highly intermittent in time and space: localized wavepackets are emitted when thin filaments in the surface density are formed by straining, leading to large vertical vorticity and correspondingly large Rossby numbers. At depth, the IGW field is the result of a number of generation events; away from the generation sites it takes the form of a relatively homogeneous, apparently random wave field. The energy of the IGW field generated spontaneously is estimated and found to be several orders of magnitude smaller than the typical IGW energy in the ocean.


2009 ◽  
Vol 66 (6) ◽  
pp. 1834-1844 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde

Abstract The possibility of interactions between oceanic and atmospheric oscillations with different temporal and spatial scales is examined with analytical solutions to idealized linear governing equations. With a reasonable choice for relevant parameters, the mesoscale oceanic features and the large-scale atmospheric oscillations can interact with each other and lead to unstable waves in the intraseasonal band in the specific coupled model presented in this study. This mechanism is different from the resonance mechanism, which requires similar temporal or spatial scales in the two media. Instead, this mechanism indicates that even in the cases in which the temporal and spatial scales are different but the dispersion relations (i.e., functions of frequency and wavenumber) of the oceanic and atmospheric oscillations are proximal, instabilities can still be generated due to the ocean–atmosphere coupling.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 141
Author(s):  
Firoza Akhter ◽  
Maurizio Mazzoleni ◽  
Luigia Brandimarte

In this study, we explore the long-term trends of floodplain population dynamics at different spatial scales in the contiguous United States (U.S.). We exploit different types of datasets from 1790–2010—i.e., decadal spatial distribution for the population density in the US, global floodplains dataset, large-scale data of flood occurrence and damage, and structural and nonstructural flood protection measures for the US. At the national level, we found that the population initially settled down within the floodplains and then spread across its territory over time. At the state level, we observed that flood damages and national protection measures might have contributed to a learning effect, which in turn, shaped the floodplain population dynamics over time. Finally, at the county level, other socio-economic factors such as local flood insurances, economic activities, and socio-political context may predominantly influence the dynamics. Our study shows that different influencing factors affect floodplain population dynamics at different spatial scales. These facts are crucial for a reliable development and implementation of flood risk management planning.


2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


Sign in / Sign up

Export Citation Format

Share Document