Resolving wave and laminar boundary layer scales for gap resonance problems

2019 ◽  
Vol 866 ◽  
pp. 759-775 ◽  
Author(s):  
H. Wang ◽  
H. A. Wolgamot ◽  
S. Draper ◽  
W. Zhao ◽  
P. H. Taylor ◽  
...  

Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the response. Previous experimental work has suggested that the damping could be attributed to laminar boundary layers; here our numerical wave tank successfully resolves both wave and boundary layer scales to provide strong numerical evidence in support of this conclusion. The simulations follow the experiments in using wave groups so that the computation is tractable, and both linear and second harmonic excitation of the gap are demonstrated.

New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 4009-4019
Author(s):  
Artur Movsesyan ◽  
Gwénaëlle Lamri ◽  
Sergei Kostcheev ◽  
Anke Horneber ◽  
Annika Bräuer ◽  
...  

AbstractMulti-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed.


Author(s):  
Mark W. Johnson

A numerical procedure for predicting the receptivity of laminar boundary layers to freestream turbulence consisting of vortex arrays with arbitrary orientation has been developed. Results show that the boundary layer is most receptivity to those vortices which have their axes approximately in the streamwise direction and vortex wavelengths of approximately 1.2 δ. The computed near wall gains for isotropic turbulence are similar in magnitude to previously published experimental values used to predict transition. The new procedure is therefore capable of predicting the development of the fluctuations in the laminar boundary layer from values of the freestream turbulence intensity and length scale and hence determining the start of transition without resorting to any empirical correlation.


1969 ◽  
Vol 91 (3) ◽  
pp. 353-358 ◽  
Author(s):  
W. A. Gustafson ◽  
I. Pelech

The two-dimensional, incompressible laminar boundary layer on a strongly curved wall in a converging channel is investigated for the special case of potential velocity inversely proportional to the distance along the wall. Similarity solutions of the momentum equation are obtained by two different methods and the differences between the methods are discussed. The numerical results show that displacement and momentum thickness increase linearly with curvature while skin friction decreases linearly.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


Author(s):  
Mari´a A. Mayorca ◽  
Jesu´s A. De Andrade ◽  
Damian M. Vogt ◽  
Hans Ma˚rtensson ◽  
Torsten H. Fransson

An investigation of the sensitivity of a geometrical scaling technique on the blade forcing prediction and mode excitability has been performed. A stage of a transonic compressor is employed as test object. A scaling ratio is defined which indicates the amount of scaling from the original geometry. Different scaling ratios are selected and 3D Navier Stokes unsteady calculations completed for each scaled configuration. A full annulus calculation (non-scaled) is performed serving as reference. The quantity of interest is the generalized force, which gives a direct indication of the mode excitability. In order to capture both up- and downstream excitation effects the mode excitability has been assessed on both rotor and stator blades. The results show that first harmonic excitation can be predicted well for both up- and downstream excitation using moderate amount of scaling. On the other hand, the predictions of second harmonic quantities do show a higher sensitivity to scaling for the investigated test case.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jianqiang Shi ◽  
Xiaojun Tang ◽  
Zhenqing Wang ◽  
Mingfang Shi ◽  
Wei Zhao

Direct numerical simulation (DNS) of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


1960 ◽  
Vol 7 (3) ◽  
pp. 385-396 ◽  
Author(s):  
Anthony Demetriades

An experimental investigation of the hydrodynamic stability of the laminar hypersonic boundary layer was carried out with the aid of a hot-wire anemometer. The case investigated was that of a flat surface at zero angle of attack and no heat transfer.The streamwise amplitude variation of both natural disturbances and of disturbances artifically excited with a siren mechanism was studied. In both cases it was found that such small fluctuations amplify for certain ranges of frequency and Reynolds number Rθ, and damp for others. The demarcation boundaries for the amplification (instability) zone were found to resemble the corresponding limits of boundary-layer instability at lower speeds. A ‘line of maximum amplification’ of disturbances was also found. The amplification rates and hence the degree of selectivity of the hypersonic layer were found, however, to be considerably lower than those at the lower speeds. The disturbances selected by the layer for maximum amplifications have a wavelength which was estimated to be about twenty times the boundary-layer thickness δ.


1973 ◽  
Vol 2 (4) ◽  
pp. 201-204
Author(s):  
R. Camarero

A calculation procedure for the solution of two-dimensional and axi-symmetric laminar boundary layers in compressible flow has been developed. The method is an extension of the integral approach of Tani to include compressibility effects by means of a reference temperature. Arbitrary pressure gradients and wall temperature can be specified. Comparisons with experiments obtained for supersonic flows over a flat plate indicate that the method yields adequate results. The method is then applied to the solution of the boundary layer on a Basemann inlet.


Sign in / Sign up

Export Citation Format

Share Document