scholarly journals Designing vortices in pipe flow with topography-driven Langmuir circulation

2021 ◽  
Vol 926 ◽  
Author(s):  
Simen Å. Ellingsen ◽  
Andreas H. Akselsen ◽  
Leon Chan

We present direct numerical simulation of a mechanism for creating longitudinal vortices in pipe flow, compared with a model theory. By furnishing the pipe wall with a pattern of crossing waves, secondary flow in the form of streamwise vortex pairs is created. The mechanism, ‘CL1’, is kinematic and known from oceanography as a driver of Langmuir circulation. CL1 is strongest when the ‘wall wave’ vectors make an acute angle with the axis, $\varphi =10^{\circ }$ – $20^{\circ }$ , changes sign near $45^{\circ }$ and is weak and of opposite sign beyond this angle. A competing, dynamic mechanism driving secondary flow in the opposite sense is also observed, created by the azimuthally varying friction. Whereas at smaller angles ‘CL1’ prevails, the dynamic effect dominates when $\varphi \gtrsim 45^{\circ }$ , reversing the flow. Curiously, the circulation strength is a faster-than-linearly increasing function of Reynolds number for small $\varphi$ . We explore an analogy with Prandtl's secondary motion of the second kind in turbulence. A transport equation for average streamwise vorticity is derived, and we analyse it for three different crossing angles, $\varphi =18.6^{\circ }, 45^{\circ }$ and $60^{\circ }$ . Mean-vorticity production is organised in a ring-like structure with the two rings contributing to rotating flow in opposite senses. For the larger $\varphi$ , the inner ring decides the main swirling motion, whereas for $\varphi =18.6^{\circ }$ , outer-ring production dominates. For the larger angles, the outer ring is mainly driven by advection of vorticity and the inner by deformation (stretching) whereas, for $\varphi =18.6^{\circ }$ , both contribute approximately equally to production in the outer ring.

Author(s):  
Ernst Lindner

To enhance the performance of the inlet guide vane and the annular duct of a jet engine, a detailed investigation of annular cascades with two different types of turbine guide vane rows is made. The first one is a leaned guide vane with an aspect ratio of two and a half and a transition duct ahead of the vane. To avoid the losses associated to the decelerating transition duct an alternative vane is designed and investigated with the same inlet and exit conditions. In this case the chord of the vane is increased to the effect that the vane begins immediately at the enterance of the diverging annulus and so a continuously accelerated flow is achieved. To maintain a good performance for this configuration a bowed-type vane with an aspect ratio of one is designed. The aim of the investigation is to obtain detailed informations on the secondary flow behaviour with particular regard to the development of the total pressure losses and the streamwise vorticity of the vortices inside and behind the blade rows. In the first step a three-dimensional, structured, explicit finite-volume flow-solver with a k–ε turbulence model is validated against the measurements, which were made in cross-sections behind the blades. Having proved that the numerical results are very close to the experimental ones, the secondary flow behaviour inside and behind the blade rows is analysed in the second step. By calculating the streamwise vorticity from the numerical results the formation of horse-shoe vortex, passage-vortex and the trailing edge vortex shed is investigated. The differences of the vortical motion and the formation of the total pressure losses between the two configurations of turbine guide vane rows are discussed.


1968 ◽  
Vol 34 (3) ◽  
pp. 595-608 ◽  
Author(s):  
M. J. Tunstall ◽  
J. K. Harvey

It has been found experimentally that the turbulent pipe flow through a mitred, right-angle bend produces a downstream secondary circulation which does not conform to the twin-circulatory flow usually to be found in pipe bends. The secondary flow is dominated by a single circulation about the axis in either a clockwise or an anticlockwise sense, between which it switches abruptly at a low, random frequency. The phenomenon is explained in terms of the asymmetry of the inner wall separation and the turbulent axial circulation generated in the upstream flow.


Author(s):  
Aoyu Ren ◽  
Hai’ou Sun ◽  
Zhongyi Wang ◽  
Xudong Chen

In order to facilitate the application of special structural ejectors, which improve the ability of pumping the secondary flow without additional power consumption, reducing the flue gas temperature at the export and enhancing the ship viability under the threat of infrared guided weapons, this paper regardes the 90 ° bend tabs ejector as the research object according to the actual situation of our country’s ships, focuses on the inner effect of the existence of tabs on the flow field in the bent channel, and mainly revealed the transformation of the vortex around the tabs, for providing an explanation to a certain extent about how the tabs affect the macro performance of ejector. With ANSYS software, ring 8 equilateral triangles tabs were designed with 120 ° wall surface mounting angle. With adjusting the blocking ratio of the main outlet area based on the similar zoom, setting inlet swirl angle, and building a hybrid grid to compute, the vortex structure distribution and the development around tabs were observed. The maximum vorticity of vortex at different distances in the mixing tube to the mix tube exit had been calculated to reflect the change of vortex intensity. The final results show that although the streamwise vortices are still located in an axial symmetrical distribution, the swirl angle leads to an uneven distribution of the flow on both sides of a single tab. The inlet swirl angle can make the symmetry of the steamwise vortex vaguer, but the effect of the convection to the vortex is enhanced. The blocking area ratio of the nozzle cross-sectional surface has a large effect on the vorticity of the streamwise vortex. The calculation results show that the larger the blocking area is, the greater the vorticity of streamwise vortex is, which also shows that when the tab shape is fixed, the tab surface area will increase the streamwise vorticity. Through the above research, the shape and the change of the streamwise vortex generated by the tabs in the bent ejector are clearly demonstrated, which can be a reference for the design of high performance bent ejector.


1956 ◽  
Vol 23 (1) ◽  
pp. 123-127
Author(s):  
G. S. Benton

Abstract The theory of laminar pipe flow has been developed, retaining the effect of the earth’s rotation. A secondary flow is set up in the pipe cross section which results in distortion of the usual parabolic profile. The distortion may be significant in pipes of moderate diameter. Laboratory studies tend to substantiate these conclusions.


Author(s):  
P W James

The purpose of this paper is, firstly, to show how the concept of excess secondary vorticity arises naturally from attempts to recover three-dimensional flow details lost in passage-averaging the equations governing the flow through gas turbines. An equation for the growth of excess streamwise vorticity is then derived. This equation, which allows for streamwise entropy gradients through a prescribed loss term, could be integrated numerically through a blade-row to provide the excess vorticity at the exit to a blade-row. The second part of the paper concentrates on the approximate methods of Smith (1) and Came and Marsh (2) for estimating this quantity and demonstrates their relationship to each other and to the concept of excess streamwise vorticity. Finally the relevance of the results to the design of blading for gas turbines, from the point of view of secondary flow, is discussed.


2010 ◽  
Vol 644 ◽  
pp. 107-122 ◽  
Author(s):  
ALFREDO PINELLI ◽  
MARKUS UHLMANN ◽  
ATSUSHI SEKIMOTO ◽  
GENTA KAWAHARA

We have performed direct numerical simulations of turbulent flows in a square duct considering a range of Reynolds numbers spanning from a marginal state up to fully developed turbulent states at low Reynolds numbers. The main motivation stems from the relatively poor knowledge about the basic physical mechanisms that are responsible for one of the most outstanding features of this class of turbulent flows: Prandtl's secondary motion of the second kind. In particular, the focus is upon the role of flow structures in its generation and characterization when increasing the Reynolds number. We present a two-fold scenario. On the one hand, buffer layer structures determine the distribution of mean streamwise vorticity. On the other hand, the shape and the quantitative character of the mean secondary flow, defined through the mean cross-stream function, are influenced by motions taking place at larger scales. It is shown that high velocity streaks are preferentially located in the corner region (e.g. less than 50 wall units apart from a sidewall), flanked by low velocity ones. These locations are determined by the positioning of quasi-streamwise vortices with a preferential sign of rotation in agreement with the above described velocity streaks' positions. This preferential arrangement of the classical buffer layer structures determines the pattern of the mean streamwise vorticity that approaches the corners with increasing Reynolds number. On the other hand, the centre of the mean secondary flow, defined as the position of the extrema of the mean cross-stream function (computed using the mean streamwise vorticity), remains at a constant location departing from the mean streamwise vorticity field for larger Reynolds numbers, i.e. it scales in outer units. This paper also presents a detailed validation of the numerical technique including a comparison of the numerical results with data obtained from a companion experiment.


1975 ◽  
Vol 97 (3) ◽  
pp. 342-352 ◽  
Author(s):  
J. D. Holdeman ◽  
J. F. Foss

The secondary flow in a low aspect ratio incompressible turbulent bounded jet is described in terms of a near, middle, and far field in which the secondary motion is initiated, developed, and decayed, respectively. The initiation of the secondary flow is explained by the distortion of the planar vortex loops which bound the jet at the exit plane. In the region away from the bounding plates, the vortex loop distortion is similar to that found in rectangular free jets; however, the bounding plates cause an additional production of streamwise vorticity near the plates which has no counterpart in the free jet flow. Downstream of the jet core region, a large-scale secondary flow develops from this vorticity. Farther downstream the secondary flow decays; the resultant flow may be characterized as a combination of a plane jet and boundary layer flows. This explanation is supported by the vorticity and velocity data of this investigation. Velocity measurements of this study are sufficiently comprehensive to allow formulation and evaluation of several quantitative measures of the secondary flow strength. The average (over a transverse plane) momentum flux thickness, and the far field behavior show the secondary flow to be dynamically passive. Properly nondimensionalized transverse velocity profiles exhibit characteristic distortions from a basically “self-similar” shape from which the center of the secondary flow rotation can be determined. Integrals of the velocity data allow the inference of mass transport across planes parallel to the bounding plates.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Lhendup Namgyal ◽  
Joseph W. Hall

A turbulent three-dimensional wall jet with an exit Reynolds number of 250,000 was investigated using stereoscopic particle image velocimetry (PIV) in the near-field region (x/D = 5). The proper orthogonal decomposition (POD) was applied to all three components of the velocity field to investigate the underlying coherent structures in the flow. A low-dimensional reconstruction of the turbulent velocity field using the first five POD modes showed the presence of coherent streamwise vortex structures formed in the outer shear-layers of the wall jet, not unlike those found in the near-field of free jets. The instantaneous streamwise vorticity reconstructed from the low-dimensional reconstructed velocity field indicates the presence of a persistent vortex pair close to the wall and on either side of the jet centerline that appear similar to the mean streamwise vorticity. These regions do not appear to be directly related to the positioning of the streamwise vortex structures in the outer shear-layer.


Author(s):  
G Persico ◽  
P Gaetani ◽  
V Dossena ◽  
G D'Ippolito ◽  
C Osnaghi

The present article proposes a novel methodology to evaluate secondary flows generated by the annulus boundary layers in complex cascades. Unlike two-dimensional (2D) linear cascades, where the reference flow is commonly defined as that measured at midspan, the problem of the reference flow definition for annular or complex 3D linear cascades does not have a general solution up to the present time. The proposed approach supports secondary flow analysis whenever exit streamwise vorticity produced by inlet endwall boundary layers is of interest. The idea is to compute the reference flow by applying slip boundary conditions at the endwalls in a viscous 3D numerical simulation, in which uniform total pressure is prescribed at the inlet. Thus the reference flow keeps the 3D nature of the actual flow except for the contribution of the endwall boundary layer vorticity. The resulting secondary field is then derived by projecting the 3D flow field (obtained from both an experiment and a fully viscous simulation) along the local reference flow direction; this approach can be proficiently applied to any complex geometry. This method allows the representation of secondary velocity vectors with a better estimation of the vortex extension, since it offers the opportunity to visualize also the region of the vortices, which can be approximated as a potential type. Furthermore, a proficient evaluation of the secondary vorticity and deviation angle effectively induced by the annulus boundary layer is possible. The approach was preliminarily verified against experimental data in linear cascades characterized by cylindrical blades, not reported for the sake of brevity, showing a very good agreement with the standard methodology based only on the experimental midspan flow field. This article presents secondary flows obtained by the application of the proposed methodology on two annular cascades with cylindrical and 3D-designed blades, stressing the differences with other definitions. Both numerical and experimental results are considered.


1995 ◽  
Vol 293 ◽  
pp. 305-319 ◽  
Author(s):  
Richard L. Leboeuf ◽  
Rabindra D. Mehta

Spanwise scale changes of the streamwise vortical structure in a plane forced mixing layer have been investigated through direct measurements. Detailed three-dimensional phase-averaged measurements were obtained of the spanwise and streamwise vorticity in a forced mixing layer undergoing three spanwise roller pairings. A two-stream mixing layer with a velocity ratio (U2/U1) of 0.6 and laminar initial boundary layers was generated in a mixing-layer wind tunnel. Acoustic forcing, consisting of a fundamental roll-up frequency and its first, second and third subharmonics, was used to phase-lock the initial development and the first three pairings of the spanwise rollers. Although the overall spanwise scale remained unchanged through the first two roller pairings, some (cyclic) ‘readjustment’ of the weaker streamwise structures was observed. The overall spanwise scale doubled during the third roller pairing. For the first time, one of the proposed mechanisms for the scale change has been identified and its details measured directly. The weakest (positive) streamwise vortex is split into two and displaced by stronger neighbouring (negative) vortices. These two vortices (of the same sign) then merge together, thus doubling the spanwise scale and circulation of the resulting streamwise vortical structure.


Sign in / Sign up

Export Citation Format

Share Document