scholarly journals Observations of the creep of polar firn

2021 ◽  
pp. 1-19
Author(s):  
Yuan Li ◽  
Ian Baker

Abstract Constant-load creep tests were performed at −10°C at various compressive stresses from 0.05 to 0.75 MPa on specimens taken every 10 m along a firn core extracted at Summit, Greenland in June 2017. The microstructures before and after creep testing were examined using both X-ray microtomography (micro-CT) and optical images from thin sections. An Andrade-like equation was used to describe the primary creep behavior and yielded the time exponent k of 0.17–0.76. The onset of secondary creep occurred at strains of ~0.5–3% but was sometimes not observed at all in shallow firn specimens and at stresses ⩽0.43 MPa even for strain up to 32%. For the 50–80 m firn crept at stresses ⩾0.55 MPa, secondary creep occurred at strains of 2.6 ± 0.28%, and the stress exponent, n, in Glen's law, was found to range from 4.1 to 4.6, similar to those observed for fully dense ice. Micro-CT observations of crept specimens showed that in most cases, the specific surface area, the total porosity and the structure model index decreased, while the structure thickness increased with increasing density. These microstructural characteristics are consistent with the densification of the firn. Optical images from thin sections showed that recrystallization occurred in some specimens that had undergone secondary creep.

2006 ◽  
Vol 530-531 ◽  
pp. 690-695 ◽  
Author(s):  
Danieli A.P. Reis ◽  
Cosme Roberto Moreira Silva ◽  
Maria do Carmo de Andrade Nono ◽  
M.J.R. Barboza ◽  
Francisco Piorino Neto ◽  
...  

The titanium affinity by oxygen is one of main factors that limit the application of their alloys as structural materials at high temperatures. Notables advances have been obeserved in the development of titanium alloys with the objective of improving the specific high temperature strength and creep-resistance properties. However, the surface oxidation limits the use of these alloys in temperatures up to 600°C. The objective of this work was estimate the influence of the plasma-sprayed coatings for oxidation protection on creep of the Ti-6Al-4V alloy, focusing on the determination of the experimental parameters related to the primary and secondary creep states. Constant load creep tests were conducted with Ti-6Al-4V alloy in air for coated and uncoated samples and in nitrogen atmosphere for uncoated samples at 500°C to evaluate the oxidation protection on creep of the Ti-6Al-4V alloy. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V specimens. Results indicated the creep resistance of the coated alloy was greater than uncoated in air, but nitrogen atmosphere was more efficient in oxidation protection. Previously reported results about the activation energies and the stress exponents values indicate that the primary and stationary creep, for both test conditions, was probably controlled by dislocation climb. Occurred a decreasing of steady state creep in function of the reduction of oxidation process, showing that Ti-6Al-4V alloy lifetime was strongly affected by the atmosphere due the oxidation suffered by the material.


1979 ◽  
Vol 101 (4) ◽  
pp. 380-386 ◽  
Author(s):  
Erhard Krempl

A previously proposed theory is specialized for the uniaxial state of stress and its prediction for creep and relaxation is analyzed in detail. Constant true stress and constant load creep tests are simulated in the presence and absence of thermal aging together with the constant strain relaxation test. The signs of the creep rate and its time derivative as well as the relaxation rate and its time derivative are introduced as criteria. The constant load creep test can reproduce the normal creep curves and nonclassical creep curves (ε˙ > 0; ε¨ > 0 for all ε and for σ0 > 0). The capabilities of the constant true stress test are limited to primary creep if the work-hardening slope is positive. When aging is introduced almost any creep curve can be reproduced in both tests. The importance of initial strain is discussed and demonstrated by room temperature creep tests on Type 304 Stainless Steel. It is suggested that the initial strains together with the creep curves be reported in the future. Poisson’s ratio in creep needs to be measured and tests are proposed which will enable a quantitative assessment of aging.


1990 ◽  
Vol 27 (2) ◽  
pp. 185-194 ◽  
Author(s):  
D. Shields ◽  
L. Domaschuk ◽  
E. Funegard

Mars Island, a man-made spray ice island, was constructed in January and February 1986, and was used as a drill platform for petroleum exploration in the Alaskan Beaufort Sea. A series of pressuremeter creep tests was run in the spray ice of Mars Island in March 1986. Individual constant-pressure tests lasted up to 5 days.It is possible to compare the creep behaviour of the spray ice as interpreted from the pressuremeter tests with the creep behaviour interpreted from the island settlement records. These comparisons are made for both primary and secondary creep on the basis of conventional power law theory. The following points are of particular interest: (1) The primary creep data can be characterized using a simple power law. The exponent of time for spray ice is similar to that for solid polycrystalline ice. The exponent of stress is different for the two kinds of ice. (2) Pressuremeter tests gave secondary creep information that correlates well with the steady-rate settlement of the island. (3) Research into the possible range of primary creep parameters for spray ice is required, given that primary creep accounted for a large portion of the settlement of Mars Island. In particular, the effect of ice density on creep rates mast be resolved. (4) The pressuremeter is potentially an excellent design control device during the manufacture of future spray ice islands. The results of constant-pressure tests of 1–2 days duration could be used to check the design assumptions pertaining to the expected consolidation of the ice mass with time. Key words: spray ice, creep, artificial islands, pressuremeter, settlement.


2010 ◽  
Vol 654-656 ◽  
pp. 508-511 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nan Yin ◽  
Gyeong Geon Lee ◽  
Yong Wan Kim

Creep behavior for Alloy 617, which is considered as one of the major structural materials of a very high temperature reactor, was investigated in air at 950oC. Creep experimental data was obtained by a series of creep tests with different stress levels at 950oC. Alloy 617 revealed little primary creep strains and unclear secondary creep stages. A tertiary creep stage was initiated from a low strain level and was dominant in full creep curves. The creep constants of A, n, m, and C in Norton’s power law and Monkman-Grant relationships were determined. In microstructure observations of crept specimens, it was found that a Cr2O3 oxidation layer was formed on the surface, and just beneath the Cr2O3 layer, an internal Al-oxide sub layer was formed with rod shapes. Also, below the internal sub layer, a thick carbide-depleted zone was developed due to reaction of the chromia and carbide precipitates. The thickness of the outer Cr-oxide layer increased with increasing creep rupture times. The increasing tendency showed a smooth slope like a parabolic curve.


2004 ◽  
Vol 126 (4) ◽  
pp. 378-383 ◽  
Author(s):  
Tim Jaglinski ◽  
Roderic Lakes

Commercial, aluminum die-cast alloys are subject to long-term stresses leading to viscoelastic material responses resulting in inefficient engine operation and failure. Constant load creep tests were conducted on aluminum die-casting alloys: B-390, eutectic Al-Si and a 17% Si-Al alloys. Rupture occurred in the primary creep regime, with the eutectic alloy having the longest times to failure. Primary creep was modeled by Jt=A+Btn with A, B, and n dependent on stress. Poor creep performance is linked to the brittle fracture of the primary silicon phase as well as other casting defects.


Author(s):  
Woo-Gon Kim ◽  
Jae-Young Park ◽  
Sung-Ho Kim ◽  
Chan-Bock Lee

This paper focused on long-term creep modeling for describing total creep curves of up to rupture for modified 9Cr-1Mo steel (G91). Creep data was obtained by a series of constant-load creep tests at 600°C. Three modified constitutive equations of modified power-law method (MPM), modified theta method (MTM) and modified omega method (MOM), described as a sum of a decaying primary creep and an accelerating tertiary creep, were proposed. A nonlinear least square fitting (NLSF) analysis was carried out on the basis of the creep data so that they provide the best fit to experimental data in optimizing parameter constants of the individual equation. Results of the NLSF analysis showed that in the lower stress regions of 160MPa (σ/σys<0.65), the MTM matched well with the experimental creep data compared with the MPM and MOM, but that in the higher stress regions of 160MPa (σ/σy > 0.65), the MPM revealed better agreement than the MTM and MOM. It was found that the MTM was superior in the modeling of long-term creep curves to the MPM and MOM. Long-term creep curves for the G91 steel were numerically modeled and its creep life was predicted by the MTM.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 623
Author(s):  
Xiaoyan Wang ◽  
Meng Li ◽  
Yuansheng Wang ◽  
Chengjiang Zhang ◽  
Zhixun Wen

Taking nickel-based single crystal superalloy DD6 as the research object, different degrees of creep damage were prefabricated by creep interruption tests, and then the creep damage was repaired by the restoration heat treatment system of solid solution heat treatment and two-stage aging heat treatment. The results show that with the creep time increasing, the alloy underwent microstructure evolution including γ′ phase coarsening, N-type rafting and de-rafting. After the restoration heat treatment, the coarse rafted γ′ phase of creep damaged specimens dissolved, precipitated, grew up, and became cubic again. Except for the specimens with creep interruption of 100 h, the γ′ phase can basically achieve the same arrangement as the γ′ phase of the original sample. The comparison of the secondary creep test shows that the steady-state creep stage of the test piece after the restoration heat treatment is relatively increased, and the total creep life can reach the same level as the primary creep life. The high temperature creep properties of the tested alloy are basically recovered, and the restoration heat treatment effect is good.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Hyo-Won Jang ◽  
Jung-In Kim ◽  
In-Ho Cha

AbstractThe purpose of this study was to investigate the effect of administering intermittent parathyroid hormone (iPTH) before tooth extraction versus after tooth extraction on the risk of developing MRONJ in experimental animal model. Twenty-five ovariectomized rats received 6 weeks of bisphosphonate therapy. They were classified into 3 groups, based on the timing of the medication, as Control, Pre-PTH and Post-PTH groups. For Control group, normal saline was administered before and after tooth extraction. iPTH was administered during 4 weeks before tooth extraction for Pre-PTH group and after tooth extraction for Post-PTH group. The animals were euthanized 8 weeks after tooth extraction. Macroscopic, histological, micro-computed tomography (micro-CT), and histomorphometric examinations were conducted. The incidences of impaired healing were 11.11% both in Pre-PTH and Post-PTH groups, which was lower than the Control group (42.86%). Bone healing in the extraction socket, based on micro-CT and histomorphometry evaluations, was best in Post-PTH and worst in Control group. The Pre-PTH group showed moderate healing pattern. Despite of limitations in this study, the authors identified Pre-PTH group seems to have positive effect on extraction socket healing. With regard to timing, administering iPTH after tooth extraction was superior to applying it before tooth extraction.


1994 ◽  
Vol 31 (4) ◽  
pp. 564-569 ◽  
Author(s):  
R.J. Fannin

Field data are reported that describe the load–strain–time relationship of geogrid reinforcement in a reinforced soil structure. The data are for a period exceeding 5 years and reveal a continued strain in the reinforcement, which occurs at nearly constant load. The response to loading is attributed to creep of the polymeric material. A comparison of the field data with laboratory isochronous load–strain curves, from rapid loading creep tests performed at a temperature similar to the mean annual temperature in the backfill soil, shows the curves describe very well the magnitude of creep strains observed in the field. Implications of the load–strain–time performance data are assessed with reference to the use in design of a tensile strength established from the rapid-loading creep test and wide-width strip test. The need to clarify, in design of polymeric reinforced soil structures, between a safe and allowable tensile strength is emphasized. Key words : reinforced soil, geogrid, creep, tensile strength, strain.


2000 ◽  
Vol 646 ◽  
Author(s):  
Wolfram Schillinger ◽  
Dezhi Zhang ◽  
Gerhard Dehm ◽  
Arno Bartels ◽  
Helmut Clemens

ABSTRACTγ-T1AI (Cr, Mo, Si, B) specimens with two different fine lamellar microstructures were produced by vacuum arc melting followed by a two-stage heat treatment. The average lamellar spacing was determined to be 200 nm and 25–50 nm, respectively. Creep tests at 700°C showed a very strong primary creep for both samples. After annealing for 24 hours at 1000 °C the primary creep for both materials is significantly decreased. The steady-state creep for the specimens with the wider lamellar spacing appears to be similar to the creep behavior prior to annealing while the creep rate of the material with the previously smaller lamellar spacing is significantly higher. Optical microscopy and TEM-studies show that the microstructure of the specimens with the wider lamellar specing is nearly unchanged, whereas the previously finer material was completely recrystallized to a globular microstructure with a low creep resistance. The dissolution of the fine lamellar microstructure was also observed during creep tests at 800 °C as manifested in an acceleration of the creep rate. It is concluded that extremely fine lamellar microstructures come along with a very high dislocation density and internal stresses which causes the observed high primary creep. The microstructure has a composition far away from the thermodynamical equilibrium which leads to a dissolution of the structure even at relatively low temperatures close to the intended operating temperature of γ-T1AI structural parts. As a consequence this limits the benefit of fine lamellar microstructures on the creep behavior.


Sign in / Sign up

Export Citation Format

Share Document