Compound-Specific Radiocarbon Analysis of Organic Compounds from Mount Fuji Proximal Lake (Lake Kawaguchi) Sediment, Central Japan

Radiocarbon ◽  
2020 ◽  
Vol 62 (2) ◽  
pp. 439-451 ◽  
Author(s):  
Shinya Yamamoto ◽  
Yosuke Miyairi ◽  
Yusuke Yokoyama ◽  
Hisami Suga ◽  
Nanako O Ogawa ◽  
...  

ABSTRACTDifferential sources of sedimentary organic compounds in a volcanic region were revealed by determining radiocarbon content (Δ14C) of organic compounds in surface sediments from Lake Kawaguchi, at the northern foot of Mount Fuji, central Japan. The Δ14C values of C16 fatty acid (−124‰) and chlorophyll a (Chl a) (−133‰) were similar to the Δ14C of dissolved inorganic carbon (DIC) in surface water (−117‰), suggesting that a significant portion of these compounds originated from modern primary producers with a reservoir age of ~1000 years. On the other hand, a large offset between the Δ14C values of Chl a (−133‰) and those of 132, 173-cyclopheophorbide-a-enol (−169‰) and pheophytin a (−179‰) suggested contributions from older pigments. In addition, the Δ14C of long-chain (C24, C26, and C28) fatty acids (−183 to −75‰) showed a large offset from that of a plant leaf remain (0‰) within sediments, demonstrating that the long-chain fatty acids were affected by substantial contributions from pre-aged terrestrial materials. Overall, the sedimentary organic compounds gave 14C ages older than the plant leaf fragment within sediments; however, the similarity between Δ14C of the C16 fatty acid and DIC implies potential for applying compound-specific radiocarbon analysis as a dating tool in volcanic lake environments.

1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons < 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


1991 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
D. R. Webb ◽  
R. A. Sanders

Caprenin (CAP) is a triglyceride that primarily contains caprylic (C8:0), capric (C10:0), and behenic (C22:0) acids. This study was undertaken to determine whether or not CAP is qualitatively digested, absorbed, and rearranged like other dietary fats and oils that contain these medium-chain and very long-chain fatty acids. In vitro results showed that neat CAP, coconut oil (CO) and peanut oil (PO) were hydrolyzed by porcine pancreatic lipase. All of the neat triglycerides also were digested in vivo by both male and female rats. This was shown by the recovery of significantly more extractable lymphatic fat than with fat-free control animals and by the recovery of orally administered triglyceride-derived fatty acids in lymph triglycerides. However, substantially more PO (74%) and CO (51%) were recovered in lymph relative to CAP (10%). These quantitative differences are consistent with the fatty acid composition of each triglyceride and primary routes of fatty acid uptake. The 24-h lymphatic recovery of CAP-derived C8:0, C10:0, and C22:0 averaged 3.9%, 17.8%, and 11.2%, respectively, for male and female rats. The C8:0 and C10:0 results approximated those obtained with CO (2.0% and 16.3%, respectively). In contrast, the 24-h absorbability of C22:0 in CAP was significantly less than that seen in PO (55.4%). Finally, there was no evidence of significant rearrangement of the positions of fatty acids on glycerol during digestion and absorption. Those fatty acids recovered in lymphatic fat tended to occupy the same glyceride positions that they did in the neat administered oils. However, the lymph fats recovered from all animals dosed with fat emulsions were enriched with endogenous lymph fatty acids. It is concluded that CAP is qualitatively digested, absorbed, and processed like any dietary fat or oil that contains medium-chain and very long-chain fatty acids.


1996 ◽  
Vol 319 (2) ◽  
pp. 483-487 ◽  
Author(s):  
Claire MEUNIER-DURMORT ◽  
Hélène POIRIER ◽  
Isabelle NIOT ◽  
Claude FOREST ◽  
Philippe BESNARD

The role of fatty acids in the expression of the gene for liver fatty acid-binding protein (L-FABP) was investigated in the well-differentiated FAO rat hepatoma cell line. Cells were maintained in serum-free medium containing 40 µM BSA/320 µM oleate. Western blot analysis showed that oleate triggered an approx. 4-fold increase in the cytosolic L-FABP level in 16 h. Oleate specifically stimulated L-FABP mRNA in time-dependent and dose-dependent manners with a maximum 7-fold increase at 16 h in FAO cells. Preincubation of FAO cells with cycloheximide prevented the oleate-mediated induction of L-FABP mRNA, showing that protein synthesis was required for the action of fatty acids. Run-on transcription assays demonstrated that the control of L-FABP gene expression by oleate was, at least in part, transcriptional. Palmitic acid, oleic acid, linoleic acid, linolenic acid and arachidonic acid were similarly potent whereas octanoic acid was inefficient. This regulation was also found in normal hepatocytes. Therefore long-chain fatty acids are strong inducers of L-FABP gene expression. FAO cells constitute a useful tool for studying the underlying mechanism of fatty acid action.


2013 ◽  
Vol 42 (11) ◽  
pp. 813-823 ◽  
Author(s):  
Francisco Palma Rennó ◽  
José Esler de Freitas Júnior ◽  
Jefferson Rodrigues Gandra ◽  
Lenita Camargo Verdurico ◽  
Marcos Veiga dos Santos ◽  
...  

PEDIATRICS ◽  
1989 ◽  
Vol 83 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Margit Hamosh ◽  
Joel Bitman ◽  
Teresa H. Liao ◽  
N. R. Mehta ◽  
R. J. Buczek ◽  
...  

The extent of gastric lipolysis, fat absorption, and infant weight gain was studied in 12 preterm infants (gestational age 28.75 ± 0.50 weeks, postnatal age 6.08 ± 0.81 weeks) fed medium-chain triglyceride or long-chain triglyceride formula for 1 week in a crossover design. The former formula contained 42% of 8:0 and 10:0 and 19% of 12:0, 14:0, and 16:0; the latter formula contained only 7% of 8:0 and 10:0 and 46% of 12:0, 14:0, and 16:0. Gastric aspirates were obtained on the second and third day of formula feeding for quantitation of lipase activity and of the extent of gastric lipolysis. Fat balance studies were conducted during the last three days of each feeding regimen. The study showed that (1) there was marked hydrolysis of formula fat in the stomach during feeding of either medium-chain triglyceride formula or long-chain triglyceride formula (20% and 16%, respectively); (2) lipase activity in the gastric aspirates was less during feeding of medium-chain triglyceride formula than before the meal, which suggested stimulation of lipase secretion by long-chain fatty acid released from long-chain triglyceride formula fat or more rapid binding of lipase to ingested lipid in the medium-chain triglyceride formula; (3) fatty acid distribution in glycerides and free fatty acids showed preferential release of medium-chain (8:0, 10:0) and long-chain unsaturated (18:1, 18:2) fatty acids in the stomach. The low content of 8:0 and 10:0 in gastric triglyceride and free fatty acids suggested that medium-chain fatty acids were absorbed directly in the stomach. (4) fat balance studies showed almost identical absorption rates (84.6% ± 3.1% and 82.8% ± 4.0%) and weight gain (23.0 ± 1.5 g/d and 20.8 ± 1.8 g/d) during feeding of either medium-chain triglyceride or long-chain triglyceride formula. In this study, in which each infant was fed either formula alternately, it was shown that although the extent of fat digestion varied among infants, medium-chain and long-chain triglyceride were absorbed to the same extent by most infants.


Sign in / Sign up

Export Citation Format

Share Document