scholarly journals Development of nutritional iron deficiency in growing male rats: haematological parameters, iron bioavailability and oxidative defence

2010 ◽  
Vol 105 (4) ◽  
pp. 517-525 ◽  
Author(s):  
María J. M. Alférez ◽  
Javier Díaz-Castro ◽  
Inmaculada López-Aliaga ◽  
María Rodríguez-Ferrer ◽  
Luis Javier Pérez-Sánchez ◽  
...  

Despite Fe deficiency having been widely studied, the sequence of events in its development still remains unclear. The aim of the present study was to elucidate the effects of nutritional Fe-deficiency development on haematological parameters, Fe bioavailability and the enzymes involved in oxidative defence in recently weaned male Wistar albino rats. Control (C) and Fe-deficient (ID) groups were fed the AIN-93 G diet with a normal Fe level (45 mg/kg diet) or with a low Fe level (5 mg/kg diet), respectively, for 20, 30 or 40 d. At day 20 serum Fe, serum ferritin and the saturation of transferrin decreased drastically, decreasing further in the course of Fe-deficiency development for the saturation of transferrin. The development of Fe deficiency did not affect plasma thiobarbituric acid-reactive substance production, or catalase (CAT) and glutathione peroxidase (GPx) activities in erythrocyte cytosol. Fe deficiency diminished hepatic Fe content and CAT and GPx activities in hepatic cytosol only at day the 20. However, in spite of the minor Fe deposits in the brain of ID rats, the CAT and GPx activities in the brain cytosolic fraction did not differ in any of the studied periods v. control rats. These results show that brain is a tissue that does not seem to depend on Fe levels for the maintenance of antioxidant defence mechanisms in the course of nutritional Fe deficiency.

2015 ◽  
Vol 3 (1) ◽  
pp. 41-47
Author(s):  
Nirjala Laxmi Madhikarmi ◽  
Kora Rudraiah Siddalinga Murthy

INTRODUCTION: The present study evaluated the modulatory effects of diphenylhydrazine induced experimental wistar albino rats and also to assess various biochemical parameters in whole blood and red blood cell lysate.MATERIALAND METHODS: Twenty male albino rats weighing 180-200 gm were selected for the study and divided in two groups; ten phenylhydrazine dihydrochloride (PHZ) induced anemia and ten healthy control. Thiobarbituric acid reactive substances and lipid hydroperoxide were measured as lipid peroxidation parameter. The antioxidant vitamins A, C and E and enzymatic antioxidants; catalase, glutathione peroxidase and superoxide dismutase were also assessed.RESULTS: Phenylhydrazine induced anemic rats showed a significant increase in the lipid peroxidation and decrease in the antioxidants as compared to healthy rats.CONCLUSION: The study concludes that phenylhydrazine induced experimental anemic albino rats showed increased oxidative stress than compared with healthy albino rats.Journal of Universal College of Medical Sciences Vol. 3, No. 1, 2015: 41-47 


2010 ◽  
Vol 3 (6) ◽  
pp. 428-433 ◽  
Author(s):  
Othman A. Alshabanah ◽  
Mohamed M. Hafez ◽  
Mohamed M. Al-Harbi ◽  
Zeinab K. Hassan ◽  
Salim S. Al Rejaie ◽  
...  

Doxorubicin is an antibiotic broadly used in treatment of different types of solid tumors. The present study investigates whether L-carnitine, antioxidant agent, can reduce the hepatic damage induced by doxorubicin. Male Wistar albino rats were divided into six groups: group 1 was intraperitoneal injected with normal saline for 10 consecutive days; group 2, 3 and 4 were injected every other day with doxorubicin (3 mg/kg, i.p.), to obtain treatments with cumulative doses of 6, 12 and 18 mg/kg. The fifth group was injected with L-carnitine (200 mg/kg, i.p.) for 10 consecutive days and the sixth group was received doxorubicin (18 mg/kg) and L-carnitine (200 mg/kg). High cumulative dose of doxorubicin (18 mg/kg) significantly increases the biochemical levels of alanine transaminase, alkaline phosphatase, total bilirubin, thiobarbituric acid reactive substances (TBARs), total nitrate/nitrite (NOx) p < 0.05 and decrease in glutathione (GSH ), superoxide dismutase (SOD), glutathione peroxidase (GSHP x), glutathione-s-transferase (GST), glutathione reductase (GR) and catalase (CAT) activity p < 0.05. The effect of doxorubicin on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control p < 0.05. Interestingly, L-carnitine supplementation completely reversed the biochemical and gene expression levels induced by doxorubicin to the control values. In conclusion, data from this study suggest that the reduction of antioxidant defense during doxorubicin administration resulted in hepatic injury could be prevented by L-carnitine supplementation by decreasing the oxidative stress and preserving both the activity and gene expression level of antioxidant enzymes.


2010 ◽  
Vol 3 (4) ◽  
pp. 254-261 ◽  
Author(s):  
Mohamed M. Sayed-Ahmed ◽  
Abdulaziz M. Aleisa ◽  
Salim S. Al-Rejaie ◽  
Abdulaziz A. Al-Yahya ◽  
Othman A. Al-Shabanah ◽  
...  

Hepatocellular carcinoma accounts for about 80–90% of all liver cancer and is the fourth most common cause of cancer mortality. Although there are many strategies for the treatment of liver cancer, chemoprevention seems to be the best strategy for lowering the incidence of this disease. Therefore, this study has been initiated to investigate whether thymoquinone (TQ),Nigella sativaderived-compound with strong antioxidant properties, supplementation could prevent initiation of hepatocarcinogenesis-induced by diethylnitrosamine (DENA), a potent initiator and hepatocarcinogen, in rats. Male Wistar albino rats were divided into four groups. Rats of Group 1 received a single intraperitoneal (I.P.) injection of normal saline. Animals in Group 2 were given TQ (4 mg/kg/day) in drinking water for 7 consecutive days. Rats of Group 3 were injected with a single dose of DENA (200 mg/kg, I.P.). Animals in Group 4 were received TQ and DENA. DENA significantly increased alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and decreased reduced glutathione (GSH), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST) and catalase (CAT) activity in liver tissues. Moreover, DENA decreased gene expression of GSHPx, GST and CAT and caused severe histopathological lesions in liver tissue. Interestingly, TQ supplementation completely reversed the biochemical and histopathological changes induced by DENA to the control values. In conclusion, data from this study suggest that: (1) decreased mRNA expression of GSHPx, CAT and GST during DENA-induced initiation of hepatic carcinogenesis, (2) TQ supplementation prevents the development of DENA-induced initiation of liver cancer by decreasing oxidative stress and preserving both the activity and mRNA expression of antioxidant enzymes.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Kingsley C. Patrick-Iwuanyanwu ◽  
Iniobong A. Charles

The present investigation was aimed to determine the effect of sub-chronic exposure to Solignum<sup>®</sup>, a permethrin-containing wood preservative on biochemical and histological changes in liver and kidneys of male Wistar albino rats. Thirty-two male rats were randomly divided into four groups: control and three treatment concentrations containing 8 rats each. The treatment groups were exposed to Solignum<sup>®</sup> at dose rates of 100, 200 and 400 mg/kg body weight (BW) respectively per day orally for four weeks. Data obtained from the study showed a progressive increase in the body weight of rats in control whereas, rats treated with different concentrations (100, 200 and 400 mg/kg BW) of Solignum<sup>®</sup> decreased significantly (≤0.05) especially at the end of the second and fourth week when compared with control. On the other hand, there was a significant decrease in the relative liver weights of rats treated with 100 and 200 mg/kg BW Solignum<sup>®</sup> while rats treated with 400 mg/kg BW showed a significant increase when compared with control. The relative weight of kidneys in experimental groups increased significantly when compared with control. Biochemical analysis results illustrated that there was a significant increase in marker enzymes namely alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity at the end of the fourth week. Similarly, total bilirubin, serum urea, creatinine and electrolytes (Na<sup>+</sup>, K<sup>+</sup> and Cl<sup>-</sup>) levels increased in a dose dependent manner in treated rats when compared with untreated control group. Serum total protein decreased significantly in experimental rats when compared with control. However, cholesterol and triglycerides showed no significant difference when compared with control. Histopathological examination of hepatocytes in treated rats was characterized by mild periportal inflammatory cells and cytoplasmic degeneration. Furthermore, histopathological examination of rat kidneys revealed inflammatory cells, congested vessel and interstitial hemorrhage in rats treated with Solignum<sup>®</sup>. Therefore, this present study is aimed to evaluate the hepatotoxic and nephrotoxic potentials associated with sub-chronic exposure to the commercial pesticide Solignum<sup>®</sup>.


2020 ◽  
Vol 1 (1) ◽  
pp. 28-35
Author(s):  
A. J. Kukoyi ◽  
T. A. Coker ◽  
K. A. Arowora ◽  
J. E. Ukperoro ◽  
M. A. Alabi ◽  
...  

The aim of this research was to investigate the possible effects of white and red table wine on the brain using Wister rats. Twenty-four (24) Wister rats weighing an average of 193g were purchased and identified at the zoological department of the University of Ibadan, Ibadan, Nigeria. The rats were randomly assigned to four groups of six rats each. Red wine (12% alcoholic content), white wine (12% alcoholic content), ethanol+H2O (12%) and distilled water (control), were administered orally and respectively for 10 days. Administration was done using syringe and tourniquets to each rat according to the kg body weight (10ml/kg body weight). The rats were later sacrificed and subjected to biochemical and brain homogenate analysis. The results show that the plasma and brain homogenate of rats administered White wines were significantly lower (p<0.05) than control for Total Cholesterol determination. Similarly, the plasma and brain homogenate of rats administered White wine were significantly lower (p<0.05) than control for Thiobarbituric Acid Reactive Substance (TBARS) determination. Meanwhile, other parameters like HDL-cholesterol, LDL-Cholesterol, Glutathione, Triglyceride, Total Protein, Uric acid and Creatinine were not significantly different from the control for plasma and homogenate analysis. In all, White wine was not found to express any trace of toxicity on the brain as opposed to Red wine. The study therefore shows that White wine are more healthy than red wines and as such when given an option between red and white, white wine should be preferred. Kukoyi, A. J. | Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, P.M.B. 1020, Wukari, Taraba State, Nigeria


2018 ◽  
Vol 61 (4) ◽  
pp. 144-149 ◽  
Author(s):  
Aysel Kurt ◽  
Yildiray Kalkan ◽  
Hasan Turut ◽  
Medine Cumhur Cure ◽  
Levent Tumkaya ◽  
...  

Background: Topiramate (TPM) decreases cytokine release and generation of reactive oxygen species (ROS). Cytokine and endothelin-1 (ET-1) secretion and ROS formation play an important role in ischemia-reperfusion (I/R) injury. We aimed to evaluate whether TPM prevents damage occurring in lung tissue during I/R. Materials and Methods: A total of 27 Wistar albino rats were divided into three groups of nine. To the I/R group, two hours of ischemia via infrarenal abdominal aorta cross-ligation and then two hours of reperfusion process were applied. TPM (100 mg/kg/day) orally for seven days was administered in the TPM treatment group. After the last dose of TPM treatment, respectively, two hours of ischemia and two hours of reperfusion were applied in this group. Results: Tumor necrosis factor-alpha (TNF-α) (p < 0.05), malondialdehyde (MDA) (p < 0.05), myeloperoxidase (MPO) (p < 0.05) and ET-1 (p < 0.05) levels of TPM treatment group’s lung tissue were significantly lower than for the I/R group. Caspase-3 and histopathological damage were rather lower than that of the I/R group. Conclusions: During I/R, lung damage occurs due to excessive TNF-α and ET-1 release and ROS generation. TPM could well reduce development of lung damage by decreasing cytokine and ET-1 release and levels of ROS produced.


Sign in / Sign up

Export Citation Format

Share Document