scholarly journals Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases

2013 ◽  
Vol 110 (4) ◽  
pp. 699-710 ◽  
Author(s):  
Muneeb U. Rehman ◽  
Mir Tahir ◽  
Abdul Quaiyoom Khan ◽  
Rehan Khan ◽  
Abdul Lateef ◽  
...  

Diosmin (DM) is a naturally occurring flavone and has been found to possess numerous therapeutic properties. In this study, we used DM as a protective agent against the nephrotoxic effects of the environmental toxicant trichloroethylene (TCE). Male Wistar rats were divided into five groups (I–V, n 6). Groups II, III and IV received an oral administration of TCE at a dose of 1000 mg/kg body weight for twenty consecutive days. The animals in groups II and III received an oral treatment of DM at doses of 20 and 40 mg/kg body weight, respectively, for twenty consecutive days, while groups I and V were given maize oil (5 ml/kg body weight and DM 40 mg/kg body weight, respectively) for 20 d. The protective effects of DM on TCE-induced oxidative stress and caspase-dependent apoptosis were investigated by assaying oxidative stress biomarkers, lipid peroxidation (LPO), serum toxicity markers, alkaline unwinding assay, caspase-3, -7 and -9, Bax and p53 expression. Oral administration of TCE in rats enhanced renal LPO, depleted glutathione content and antioxidant enzymes, induced DNA strand breaks (P< 0·001), modulated the expression of Bax and p53 protein and induced the expression of caspase-3, -7 and -9. Co-treatment with DM prevented oxidative stress by restoring the levels of antioxidant enzymes; furthermore, a significant dose-dependent decrease in DNA disintegration and kidney toxicity markers such as blood urea N, creatinine, lactate dehydrogenase and kidney injury molecule-1 was observed. DM also effectively decreased the TCE-induced up-regulation of Bax and p53. Data from the present study establish the protective role of DM against TCE-induced renal damage.

2016 ◽  
Vol 6 (1) ◽  
pp. 39 ◽  
Author(s):  
Muneer Ahmad Dar ◽  
Rajinder Raina ◽  
Arshad Hussain Mir ◽  
Pawan Kumar Verma ◽  
Nrip Kishore Pankaj ◽  
...  

2016 ◽  
Vol 36 (4) ◽  
pp. 349-364 ◽  
Author(s):  
R Ali ◽  
A Shahid ◽  
N Ali ◽  
SK Hasan ◽  
F Majed ◽  
...  

Naringenin is a naturally occurring flavanones and has been found to exhibit free radical scavenging, enzyme inhibition, antioxidants, anti-inflammatory, and anticancer activities. Present study was designed to evaluate the protective role of naringenin against benzo[a]pyrene (B[a]P)-induced oxidative stress and pulmonary toxicity. Rats were treated with naringenin at a dose of 100 mg/kg body weight (b. wt.), by oral gavage. B[a]P in a single dose of 50 mg/kg b. wt. was given intraperitoneally. Total protein, total cell counts, lactate dehydrogenase, lipid peroxidation, reduced glutathione, antioxidant enzymes activities, lung histology and expression of nuclear factor kappa B (NF-κB), and cyclo-oxygenase-2 (COX-2) was assessed to evaluate protective effects of naringenin. Histopathological and immunohistochemical studies were also carried out to observe lung toxicity and inflammation. B[a]P administration enhanced the levels of lung injury markers and reduced antioxidant enzymes activities. Naringenin treatment attenuated the levels of oxidative stress by restoring antioxidant enzymes, further improved lung histological damage and significant decrease in inflammatory responses. Naringenin also effectively decreased the expression of NF-κB, and COX-2 induced by B[a]P. These findings suggest that naringenin supplementation is beneficial in maintaining the integrity of alveoli and the epithelium that may be used as a protective agent in B[a]P-induced oxidative stress and lung damage. However, further studies are warranted to elucidate the potential mechanism of action of naringenin.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xing Jian Zhang ◽  
Ya Li Wang ◽  
Song Zhou ◽  
Xiaojun Xue ◽  
Qiang Liu ◽  
...  

Objective. To investigate the role of oxidative stress, NF-κB activity, and its related cytokines in the pathogenesis of seawater immersion after open abdominal injury (SI-OAI) and whether UTI treatment can attenuate SI-OAI induced IMI.Methods. Wistar rats were randomly divided into three groups: C group, S group, and U group. The rats in C group only suffered from anesthesia and surgical operation, whereas the rats in S group and U group received caudal vein injection of normal saline without/with 50,000 U/kg body weight of UTI. The activities of TNF-α, IL-6, SOD, MDA, ROS, NF-κB, and IκB-βwere monitored by ELISA, biochemical methods, EMSA, and Western blot, respectively.Results. The plasma inflammatory mediators and the contents of MDA, ROS, and NF-κB in intestine as well as the pathological scores in ileal mucosa were significantly increased in rats after SI-OAI, accompanied by a reduction in SOD activities and IκB-βlevels. UTI treatment significantly attenuated intestinal histopathological changes with evidence of a decrease in all of the parameters, except for upregulation of the levels of SOD and IκB-βprotein.Conclusion. UTI can attenuate SI-OAI induced IMI via inhibition of NF-κB activity, subsequently inhibiting the expression of inflammatory cytokines and by combating oxidative stress.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3465
Author(s):  
Aya Saleh ◽  
Ruth Perets

Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.


Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Islam M. El-Garawani ◽  
Elsayed A. Khallaf ◽  
Alaa A. Alne-na-ei ◽  
Rehab G. Elgendy ◽  
Gaber A. M. Mersal ◽  
...  

AbstractImidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.


2003 ◽  
Vol 285 (2) ◽  
pp. H499-H506 ◽  
Author(s):  
Stéphanie Héon ◽  
Martin Bernier ◽  
Nicolas Servant ◽  
Stevan Dostanic ◽  
Chunlei Wang ◽  
...  

Doxorubicin (DOX), an anticancer drug, causes a dose-dependent cardiotoxicity. Some evidence suggests that female children have an increased risk for DOX-mediated cardiac damage. To determine whether the iron chelator dexrazoxane (DXR) could reduce DOX-induced cardiotoxicity in the young, we injected day 10 neonate female and male rat pups with a single dose of saline or DOX, DXR, or DXR + DOX (20:1). We followed body weight gain with growth, measured cardiac hypertrophy after a 2-wk swim exercise program, markers of apoptosis (Bcl-2, BAX, BNIP1, caspase 3 activation), oxidative stress (heme oxygenase 1, protein carbonyl levels), the chaperone protein clusterin, and the transcriptional activator early growth response gene-1 (Egr-1) in hearts of nonexercised and exercised rats on neonate day 38. All DOX-alone and DXR + DOX-treated rats showed decreased weight gain, with female rats affected earlier than male rats. DXR-alone, DOX-alone, and DXR + DOX-treated rats had an increased heart weight-to-body weight (heart wt/body wt) ratio after the exercise program with female rats showing the largest increase in heart wt/body wt. Drug-treated females also showed increased cardiac apoptosis, as measured by the increased expression of the proapoptotic proteins BAX and BNIP1 and the appearance of caspase 3 activation products, and oxidative stress, as measured by increased heme oxygenase 1 expression, and reduced Egr-1 and clusterin expression when compared with the similarly treated male rats. We conclude that DXR preinjection did not reduce DOX-induced noncardiac and cardiac damage and that young female rats were more susceptible to DXR and DOX toxicities than age-matched male rats.


2020 ◽  
Vol 42 (6) ◽  
pp. 875-875
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Shamim A Qureshi Shamim A Qureshi ◽  
Sehrish Kiran Sehrish Kiran ◽  
...  

Rauwolfia Serpentina is a medicinal herb used for hypertension and psychotic disorders. In this study neuroprotective effects of Rauwolfia serpentina plant extract following the exposure to acute immobilization (2h) stress in rats were investigated. The extract of the plant administered orally at non-sedative dose 30mg/kg before immobilization (2h) to observe stress induced behavioral deficits. Neuroprotective efficacy of extract was assessed in terms of alteration in activities of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT). We also monitored leptin, corticosterone and glucose levels in plasma to obtain an imminent role of Rauwolfia serpentina. Animals were orally administered with Rauwolfia serpentina (30mg/kg) while controls receive saline (1ml/kg). Each group was subdivided into stressed and unstressed groups. Behavioral deficits were monitored in the open field and light dark activity box. Animals were decapitated; plasma samples were collected for CAT, SOD, corticosterone, leptin and glucose estimation. Orally administered Rauwolfia serpentina attenuates stress induced behavioral deficits and rise antioxidant enzymes levels. Plant extract also prevents the stress-induced increase in corticosterone but glucose levels do not manifest any significant change. Immobilization stress (2h) induced decrease of plasma leptin levels were reversed by Rauwolfia serpentina. Therefore, the present study suggests that Rauwolfia serpentina has potentiality to antagonize undesirable effects of immobilization stress (2h) by reducing stress perception and inhibitory effects of stress on the activity of hypothalamic pituitary adrenal (HPA) axis and animal behaviors. Despite an apparent role of Rauwolfia serpentina the mechanism of action at molecular level causing the acute anxiolytic effects of oral administration of plant extract remains to be determined.


2013 ◽  
Vol 3 (2) ◽  
pp. 65-70
Author(s):  
Sabah Ansar ◽  
Mohammad Iqbal ◽  
Noura Al Jameil

In this study the effect of butylated hydroxyanisole (BHA), a phenolic antioxidantused in food on Ferric‐Nitrilotriacetate (Fe–NTA) induced nephrotoxicity is reported. Fe‐NTA (9 mg Fe/kg body weight, intraperitoneally) treatment enhanced the renal microsomal lipid peroxidation and hydrogen peroxide generation to ~2‐2.5 folds compared to saline‐treated control and glutathione levels and the activities of antioxidant enzymes decreased to a range of 2–2.5 fold in kidney. These changes were reversed significantly in animals receiving a pretreatment of BHA. Pretreatment with BHA prior to Fe‐ NTA treatment reduced microsomal lipid peroxidation and hydrogen peroxide generation to 1.3‐1.5 fold compared to control group and glutathione and the activities of antioxidant enzymes increased to a range of 1.5‐2 folds in kidney. Fe‐NTA administration enhanced value of blood urea nitrogen and creatinine to 3.7 and 2.5 fold respectively as compared to their corresponding control group. Administration of Fe‐NTA to rats receiving a pretreatment of BHA led to a significant diminution in both of these values. The results indicate that BHA is a potent chemopreventive agent and suppresses Fe‐NTA induced nephrotoxicity in rats.


Sign in / Sign up

Export Citation Format

Share Document