scholarly journals Mutated p53 in HGSC—From a Common Mutation to a Target for Therapy

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3465
Author(s):  
Aya Saleh ◽  
Ruth Perets

Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.

Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22066-e22066
Author(s):  
G. Speranza ◽  
V. Cohen ◽  
J. S. Agulnik ◽  
G. Chong ◽  
F. Meilleur ◽  
...  

e22066 Background: EGFR mutations predict sensitivity and clinical outcome to tyrosine kinase inhibitors (TKI) in NSCLC. The two most commonly described mutations are Exon 19 deletion and Exon 21 L858R missense mutations. Genetic alterations over time have been described in other tumour types, but studies assessing EGFR genotypic changes with lung cancer progression are lacking. We sought to compare EGFR mutational status from lung tumors at time of recurrence or progression with the primary tumor. Methods: Using the Jewish General Hospital lung cancer database, of all patients diagnosed with NSCLC since 1999, those with biopsies at two different points in time were identified. All tumour samples were genotyped for EGFR exons 19 and 21 mutations using denaturing high performance liquid chromatography (dHPLC). Results: 29 patients were identified. Data for 12 patients, whose time of recurrence or progression varied between 4 months and 6 years, are available at this time. Of 12 patients, one had EGFR exon 19 mutation at time of diagnosis. One patient who initially displayed no EGFR mutation was found to have an exon 19 deletion at time of recurrence. The one with exon 19 at time of initial diagnosis continued to express exon 19 in the second biopsy. Conclusions: To our knowledge, this is the only study assessing changes in molecular genotype using dHPLC between primary and recurrent or progressive lung cancer biopsy specimens. Although sample size is small, it is evident that changes in EGFR mutational status can occur. Further prospective studies are required to determine how commonly molecular changes occur. No significant financial relationships to disclose.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3181-3181
Author(s):  
Zejuan Li ◽  
Jun Lu ◽  
Miao Sun ◽  
Shuangli Mi ◽  
Hao Zhang ◽  
...  

Abstract Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. It is estimated that 13,410 cases will be diagnosed and 8,990 will die of AML in the United States in 2007 (http://seer.cancer.gov). AML is a genetically diverse hematopoietic malignancy with variable response to treatment. Expression profiling of protein-coding genes using DNA microarray in AML has resulted in inconsistent data from different laboratories. Therefore, further validation of these observations in large cohorts and in independent studies is definitely required before clinical application becomes feasible. Recently, Golub and colleagues described a new, bead-based flow cytometric microRNA (miRNAs, miRs) expression profiling method that could successfully classify tumors. MiRNAs are endogenous ∼22 nucleotide non-coding RNAs, which can function as oncogenes and tumor suppressors. To provide new insights into the complex genetic alterations in leukemogenesis and to identify novel markers for diagnosis and treatment of AML, we performed a genome-wide analysis of miRNA expression profiles using the bead-based method on 54 AML samples with common translocations including t(15;17), t(8;21), inv(16), and 11q23 rearrangement, along with normal controls. In both unsupervised and supervised hierarchical cluster analyses, we observed that t(15;17) samples grouped together as one cluster, as do the 11q23 rearrangement samples. Interestingly, t(8;21) and inv(16), both CBF (core-binding factor) AMLs, grouped together as a unique cluster. Forty-one miRNAs exhibited significantly differential expression between different subtypes of AMLs, and/or between AMLs and normal controls. Notably, expression signature of a minimal number of two, three, and seven miRNAs could be used for class prediction of CBF, t(15;17), and 11q23 rearrangement AMLs, respectively, with an overall diagnostic accuracy of 94–96%. We further showed that overexpression of the two discriminatory miRNAs in CBF AML is associated with epigenetic regulation, rather than DNA copy number amplification. Moreover, several important target genes of these discriminatory miRNAs have also been validated. We are currently exploring the role of these discriminatory miRNAs and their critical target genes in the development of AML using in vitro and in vivo models. This work will enhance our understanding of the biological role of these miRNAs and their targets in leukemogenesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3536-3536 ◽  
Author(s):  
David Dominguez-Sola ◽  
Jennifer Kung ◽  
Victoria A Wells ◽  
Antony B Holmes ◽  
Laura Pasqualucci ◽  
...  

Abstract A significant fraction of B cell non-Hodgkin lymphomas (B-NHL) of germinal center origin carry heterozygous missense mutations in FOXO1, a member of the FOXO family of transcription factors. FOXO1 is a central component of the PI3K signaling cascade engaged by the B cell receptor and is essential for B cell homeostasis and survival (Dengler et al, Nat Immunol 2008; Srinivasan et al, Cell 2009; Lin et al, Nat Immunol 2010). In response to PI3K activation, AKT phosphorylates FOXO1 leading to its nuclear-cytoplasmic translocation and inactivation. Missense mutations of the FOXO1 gene are detectable in germinal center (GC)-derived B-NHL, including ~12% of Burkitt Lymphoma (BL) and ~9% of Diffuse Large B Cell Lymphoma (DLBCL) cases (Schmitz et al, Nature 2012; Trinh et al, Blood 2013; Pasqualucci et al, Cell Rep 2014). The role of FOXO1 in normal GC development as well as the contribution of its mutations to lymphomagenesis is unclear. We show that FOXO1 expression is restricted to the dark zone of GCs, where its nuclear localization is detectable in most B cells. Mice carrying the conditional inactivation of FOXO1 in GC B cells display normal GC in number and size. However, these GCs lack phenotypically defined (CXCR4hi/CD86lo) dark zones and are entirely composed by light zone B cells (CXCR4lo/CD86hi). FOXO1-/- GC B cells express AICDA and carry a normal number of mutations in their immunonoglobulin genes, but do not undergo affinity maturation, resulting in severely impaired antigen responses. In order to identify the biological program controlled by FOXO1 in GC B cells, we identified candidate transcriptional target genes by integrating ChIP-seq and gene expression data. These analyses showed that that the establishment of the dark zone fate relies on a FOXO1-dependent transcriptional network that is enriched for genes involved in immune signaling cascades triggered by the B cell receptor and by a variety of cytokines controlling GC polarity. Notably, a majority of these target genes are co-bound and co-regulated, in a FOXO1-dependent manner, by BCL6, a well characterized GC master regulator. To assess the role of BL- and DLBCL-associated mutations, we first investigated the subcellular localization of FOXO1 mutant proteins by transfecting wild type and mutant GFP-tagged FOXO1 alleles into HeLa cells. As previously shown (Trinh et al, Blood 2013), this analysis showed that mutant FOXO1 proteins, but not the wild-type one, readily localize in the nucleus. Analogously, immunofluorescence analysis of BL and DLBCL samples showed the presence of nuclear FOXO1 in all tumors carrying mutations in the FOXO1 gene. However, nuclear localization was also detectable in virtually all cases carrying normal FOXO1 genes. Accordingly, in vitro experiments testing the ability of normal and mutated FOXO1 proteins to respond to various signals activating the PI3K pathway in multiple BL and DLBCL cell lines, failed to display a correlation between the presence of mutations and responsiveness to these signals. Taken together, these results suggest that other mechanisms in addition to direct gene mutation are responsible for the constitutive nuclear localization of FOXO1 in tumors. We are now examining the consequences of FOXO1 missense mutations in vivo, by reconstituting FOXO1-/- GC B cells with FOXO1 mutants using bone marrow chimeras. Disclosures No relevant conflicts of interest to declare.


1990 ◽  
Vol 10 (7) ◽  
pp. 3307-3313 ◽  
Author(s):  
D G Munroe ◽  
J W Peacock ◽  
S Benchimol

The Friend erythroleukemia virus complex contains no cell-derived oncogene. Transformation by this virus may therefore involve mutations affecting cellular gene expression. We provide evidence that inactivating mutations of the cellular p53 gene are a common feature in Friend virus-induced malignancy, consistent with an antioncogene role for p53 in this disease. We have shown that frequent rearrangements of the p53 gene cause loss of expression or synthesis of truncated proteins, whereas overexpression of p53 protein is seen in other Friend cell lines. We now demonstrate that p53 expression in the latter cells is also abnormal, as a result of missense mutations in regions encoding highly conserved amino acids. Three of these aberrant alleles obtained from cells from different mice were cloned and found to function as dominant oncogenes in gene transfer assays, supporting the view that certain naturally occurring missense mutations in p53 confer a dominant negative phenotype on the encoded protein.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Geoffrey C. Kabat ◽  
Rita A. Kandel ◽  
Andrew G. Glass ◽  
Joan G. Jones ◽  
Neal Olson ◽  
...  

Mutations in the p53 tumor suppressor gene and accumulation of its protein in breast tissue are thought to play a role in breast carcinogenesis. However, few studies have prospectively investigated the association of p53 immunopositivity and/or p53 alterations in women with benign breast disease in relation to the subsequent risk of invasive breast cancer. We carried out a case-control study nested within a large cohort of women biopsied for benign breast disease in order to address this question. After exclusions, 491 breast cancer cases and 471 controls were available for analysis. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). Neither p53 immunopositivity nor genetic alterations in p53 (either missense mutations or polymorphisms) was associated with altered risk of subsequent breast cancer. However, the combination of both p53 immunopositivity and any p53 nucleotide change was associated with an approximate 5-fold nonsignificant increase in risk (adjusted OR 4.79, 95% CI 0.28–82.31) but the confidence intervals were extremely wide. Our findings raise the possibility that the combination of p53 protein accumulation and the presence of genetic alterations may identify a group at increased risk of breast cancer.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Shinjinee Sengupta ◽  
Samir K. Maji ◽  
Santanu K. Ghosh

ABSTRACT Loss of p53 function is largely responsible for the occurrence of cancer in humans. Aggregation of mutant p53 has been found in multiple cancer cell types, suggesting a role of aggregation in loss of p53 function and cancer development. The p53 protein has recently been hypothesized to possess a prion-like conformation, although experimental evidence is lacking. Here, we report that human p53 can be inactivated upon exposure to preformed fibrils containing an aggregation-prone sequence-specific peptide, PILTIITL, derived from p53, and the inactive state was found to be stable for many generations. Importantly, we provide evidence of a prion-like transmission of these p53 aggregates. This study has significant implications for understanding cancer progression due to p53 malfunctioning without any loss-of-function mutation or occurrence of transcriptional inactivation. Our data might unlock new possibilities for understanding the disease and will lead to rational design of p53 aggregation inhibitors for the development of drugs against cancer.


Sign in / Sign up

Export Citation Format

Share Document