Overview of the central amygdala role in feeding behaviour

2021 ◽  
pp. 1-23
Author(s):  
Mina Sadat Izadi ◽  
Maryam Radahmadi

Abstract The neural regulation of feeding behaviour, as an essential factor for survival, is an important research area today. Feeding behaviour and other lifestyle habits play a major role in optimising health and obesity control. Feeding behaviour is physiologically controlled through processes associated with energy and nutrient needs. Different brain nuclei are involved in the neural regulation of feeding behaviours. Therefore, understanding the function of these brain nuclei helps develop feeding control methods. Among important brain nuclei, there is scant literature on the central amygdala (CeA) nucleus and feeding behaviour. The CeA is one of the critical brain regions that play a significant role in various physiological and behavioural responses, such as emotional states, reward processing, energy balance, and feeding behaviour. It contains gamma-aminobutyric acid (GABA) neurons. Also, it is the major output region of the amygdaloidal complex. Moreover, the CeA is also involved in multiple molecular and biochemical factors and has extensive connections with other brain nuclei and their neurotransmitters, highlighting its role in feeding behaviour. This review aims to highlight the significance of the CeA nucleus on food consumption by its interaction with the performance of reward, digestive and emotional systems.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ashley E. Smith ◽  
Kehinde O. Ogunseye ◽  
Julia N. DeBenedictis ◽  
Joanna Peris ◽  
James M. Kasper ◽  
...  

AbstractFood intake is a complex behavior regulated by discrete brain nuclei that integrate homeostatic nutritional requirements with the hedonic properties of food. Homeostatic feeding (i.e. titration of caloric intake), is typically associated with hypothalamic brain nuclei, including the paraventricular nucleus of the hypothalamus (PVN). Hedonic feeding is driven, in part, by the reinforcing properties of highly palatable food (HPF), which is mediated by the nucleus accumbens (NAc). Dysregulation of homeostatic and hedonic brain nuclei can lead to pathological feeding behaviors, namely overconsumption of highly palatable food (HPF), that may drive obesity. Both homeostatic and hedonic mechanisms of food intake have been attributed to several brain regions, but the integration of homeostatic and hedonic signaling to drive food intake is less clear, therefore we aimed to identify the neuroanatomical, functional, and behavioral features of a novel PVN → NAc circuit. Using viral tracing techniques, we determined that PVN → NAc has origins in the parvocellular PVN, and that PVN → NAc neurons express VGLUT1, a marker of glutamatergic signaling. Next, we pharmacogenetically stimulated PVN → NAc neurons and quantified both gamma-aminobutyric acid (GABA) and glutamate release and phospho-cFos expression in the NAc and observed a robust and significant increase in extracellular glutamate and phospho-cFos expression. Finally, we pharmacogenetically stimulated PVN → NAc which decreased intake of highly palatable food, demonstrating that this glutamatergic circuitry regulates aspects of feeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Lin ◽  
Jiahui Deng ◽  
Kai Yuan ◽  
Qiandong Wang ◽  
Lin Liu ◽  
...  

AbstractThe majority of smokers relapse even after successfully quitting because of the craving to smoking after unexpectedly re-exposed to smoking-related cues. This conditioned craving is mediated by reward memories that are frequently experienced and stubbornly resistant to treatment. Reconsolidation theory posits that well-consolidated memories are destabilized after retrieval, and this process renders memories labile and vulnerable to amnestic intervention. This study tests the retrieval reconsolidation procedure to decrease nicotine craving among people who smoke. In this study, 52 male smokers received a single dose of propranolol (n = 27) or placebo (n = 25) before the reactivation of nicotine-associated memories to impair the reconsolidation process. Craving for smoking and neural activity in response to smoking-related cues served as primary outcomes. Functional magnetic resonance imaging was performed during the memory reconsolidation process. The disruption of reconsolidation by propranolol decreased craving for smoking. Reactivity of the postcentral gyrus in response to smoking-related cues also decreased in the propranolol group after the reconsolidation manipulation. Functional connectivity between the hippocampus and striatum was higher during memory reconsolidation in the propranolol group. Furthermore, the increase in coupling between the hippocampus and striatum positively correlated with the decrease in craving after the reconsolidation manipulation in the propranolol group. Propranolol administration before memory reactivation disrupted the reconsolidation of smoking-related memories in smokers by mediating brain regions that are involved in memory and reward processing. These findings demonstrate the noradrenergic regulation of memory reconsolidation in humans and suggest that adjunct propranolol administration can facilitate the treatment of nicotine dependence. The present study was pre-registered at ClinicalTrials.gov (registration no. ChiCTR1900024412).


Author(s):  
Brandon Gunasekera ◽  
Kelly Diederen ◽  
Sagnik Bhattacharyya

Abstract Background Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. Aims We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. Methods This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis Results There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. Conclusions There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.


2016 ◽  
Vol 47 (2) ◽  
pp. 118-133 ◽  
Author(s):  
Dung Tran ◽  
Barbara J. Reys ◽  
Dawn Teuscher ◽  
Shannon Dingman ◽  
Lisa Kasmer

This commentary highlights the contribution that careful and systematic analyses of curriculum or content standards can make to questions and issues important in the mathematics education field. We note the increased role that curriculum standards have played as part of a standards-based education reform strategy. We also review different methods used by researchers to compare and analyze the Common Core State Standards for Mathematics, each method designed for a particular purpose. Finally, we call upon mathematics education researchers to engage in careful analysis of curriculum standards and to share their findings in ways that can inform public debate as well as support education professionals in improving student learning opportunities.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1727
Author(s):  
Leandro Pralon ◽  
Gabriel Beltrao ◽  
Alisson Barreto ◽  
Bruno Cosenza

Noise Radar technology is the general term used to describe radar systems that employ realizations of a given stochastic process as transmit waveforms. Originally, carriers modulated in amplitude by a Gaussian random signal, derived from a hardware noise source, were taken into consideration, justifying the adopted nomenclature. With the advances made in hardware as well as the rise of the software defined noise radar concept, waveform design emerges as an important research area related to such systems. The possibility of generating signals with varied stochastic properties increased the potential in achieving systems with enhanced performances. The characterization of random phase and frequency modulated waveforms (more suitable for several applications) has then gained considerable notoriety within the radar community as well. Several optimization algorithms have been proposed in order to conveniently shape both the autocorrelation function of the random samples that comprise the transmit signal, as well as their power spectrum density. Nevertheless, little attention has been driven to properly characterize the stochastic properties of those signals through closed form expressions, jeopardizing the effectiveness of the aforementioned algorithms as well as their reproducibility. Within this context, this paper investigates the performance of several random phase and frequency modulated waveforms, varying the stochastic properties of their modulating signals.


2017 ◽  
Vol 59 (5) ◽  
pp. 670-679 ◽  
Author(s):  
Caleb Goods

A central, yet overlooked, aspect of contemporary employment relations is the growing impact climate change is having on workplace relations. This research note outlines how climate change and workplace relations are linked, the minimal academic focus this important research area has received and the limited response from employment relations actors to the climate change challenge. Some examples of ‘climate bargaining’ are given to demonstrate both the connection between employment relations and climate change and to provide possible models for meaningfully advancing climate change actions in the workplace.


Author(s):  
YAN ZHANG ◽  
BIN YU ◽  
HAI-MING GU

Document image segmentation is an important research area of document image analysis which classifies the contents of a document image into a set of text and non-text classes. Previous existing methods are often designed to classify text and halftone therefore they perform poorly in classifying graphics, tables and circuit, etc. In this paper, we present a robust multi-level classification method using multi-layer perceptron (MLP) and support vector machine (SVM) to segment the texts from non-texts and thereafter classify them as tables, graphics and halftones. This method outperforms previously existing methods by overcoming various issues associated with the complexity of document images. Experimental results prove the effectiveness of our proposed method. By virtue of our multi-level classification approach, the text components, halftone components, graphic components and table components are accurately classified respectively which would highly improve OCR accuracy to reduce garbage symbols as well as increase compression ratio thereafter simultaneously.


2016 ◽  
Vol 44 (6) ◽  
pp. 723-729 ◽  
Author(s):  
Elizabeth Newton ◽  
Nicola Shepherd ◽  
Jim Orford ◽  
Alex Copello

Background: The psychological difficulties and emotional impacts resulting from the substance use of close relatives constitute a large, underestimated and frequently unidentified health burden. The development of primary care mental health services in response to the Improving Access to Psychological Therapies initiative provides an opportunity to investigate this in more depth. Aims: A preliminary exploration of prevalence of IAPT service-users being treated for moderate-severe depression and/or anxiety who report that they have relatives with alcohol and/or drug problems. To explore the characteristics of the sample including comparison with those without a substance misusing relative. Method: One hundred service users completed a brief questionnaire. Routine data on depression and anxiety symptoms were accessed for the full consenting sample. Descriptive statistics were used to explore the family members of substance users and differences to the rest of the sample. Results: Twenty-two of the 100 IAPT service users reported having a close relative whose use of substances was of concern to them. The group with a relative who used substances were more depressed at the beginning of treatment than the rest of the sample. Conclusions: A significant number of people seeking psychological help for depression and anxiety within IAPT services reported being concerned about a close relative who misuses substances. They may be more distressed than those without a relative who misuses substances. Further exploration is warranted but preliminary findings indicate that this is an important research area with significant clinical implications.


2014 ◽  
Vol 369 (1654) ◽  
pp. 20130602 ◽  
Author(s):  
Simon Höft ◽  
Stephanie Griemsmann ◽  
Gerald Seifert ◽  
Christian Steinhäuser

Astrocytes may express ionotropic glutamate and gamma-aminobutyric acid (GABA) receptors, which allow them to sense and to respond to neuronal activity. However, so far the properties of astrocytes have been studied only in a few brain regions. Here, we provide the first detailed receptor analysis of astrocytes in the murine ventrobasal thalamus and compare the properties with those in other regions. To improve voltage-clamp control and avoid indirect effects during drug applications, freshly isolated astrocytes were employed. Two sub-populations of astrocytes were found, expressing or lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. AMPA receptor-bearing astrocytes displayed a lower Kir current density than cells lacking the receptors. In contrast, all cells expressed GABA A receptors. Single-cell RT-PCR was employed to identify the receptor subunits in thalamic astrocytes. Our findings add to the emerging evidence of functional heterogeneity of astrocytes, the impact of which still remains to be defined.


Sign in / Sign up

Export Citation Format

Share Document