scholarly journals Glutamatergic projections from homeostatic to hedonic brain nuclei regulate intake of highly palatable food

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ashley E. Smith ◽  
Kehinde O. Ogunseye ◽  
Julia N. DeBenedictis ◽  
Joanna Peris ◽  
James M. Kasper ◽  
...  

AbstractFood intake is a complex behavior regulated by discrete brain nuclei that integrate homeostatic nutritional requirements with the hedonic properties of food. Homeostatic feeding (i.e. titration of caloric intake), is typically associated with hypothalamic brain nuclei, including the paraventricular nucleus of the hypothalamus (PVN). Hedonic feeding is driven, in part, by the reinforcing properties of highly palatable food (HPF), which is mediated by the nucleus accumbens (NAc). Dysregulation of homeostatic and hedonic brain nuclei can lead to pathological feeding behaviors, namely overconsumption of highly palatable food (HPF), that may drive obesity. Both homeostatic and hedonic mechanisms of food intake have been attributed to several brain regions, but the integration of homeostatic and hedonic signaling to drive food intake is less clear, therefore we aimed to identify the neuroanatomical, functional, and behavioral features of a novel PVN → NAc circuit. Using viral tracing techniques, we determined that PVN → NAc has origins in the parvocellular PVN, and that PVN → NAc neurons express VGLUT1, a marker of glutamatergic signaling. Next, we pharmacogenetically stimulated PVN → NAc neurons and quantified both gamma-aminobutyric acid (GABA) and glutamate release and phospho-cFos expression in the NAc and observed a robust and significant increase in extracellular glutamate and phospho-cFos expression. Finally, we pharmacogenetically stimulated PVN → NAc which decreased intake of highly palatable food, demonstrating that this glutamatergic circuitry regulates aspects of feeding.

1996 ◽  
Vol 271 (2) ◽  
pp. R388-R392 ◽  
Author(s):  
S. E. Specter ◽  
B. A. Horwitz ◽  
J. L. Beverly

The diminished sensitivity of genetically obese (fa/ fa) Zucker rats to the glucoprivic agent 2-deoxy-D-glucose (2-DG) may involve impaired release of the neurotransmitter gamma-aminobutyric acid (GABA) in discrete regions of the hypothalamus. Extracellular GABA concentrations in the medial (MH) and lateral (LH) hypothalamus of lean (Fa/Fa) and age-matched obese (fa/fa) male Zucker rats before and after 2-DG (1.2 mmol/kg i.v.). Basal GABA concentrations were higher (P < 0.05) in the MH of obese vs. lean rats. No differences were noted in LH GABA levels between lean and obese rats or in baseline extracellular GABA levels between brain regions in lean rats. In lean rats, a characteristic bimodal increase in GABA concentrations was apparent in the MH, whereas GABA concentrations decreased in the LH during the 60 min after 2-DG. No changes in GABA concentrations in dialysate from the MH or LH of obese rats were observed after 2-DG. The alterations in basal activity and responsiveness to glucoprivic stimuli by GABAergic system in the MH of obese rats may reflect a defect in central glucostatic control of food intake and, ultimately, in the hypothesized autonomic imbalance in fa/fa Zucker rat.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xin-Yi Chen ◽  
Lei Chen ◽  
Wu Yang ◽  
An-Mu Xie

The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.


2021 ◽  
pp. 1-23
Author(s):  
Mina Sadat Izadi ◽  
Maryam Radahmadi

Abstract The neural regulation of feeding behaviour, as an essential factor for survival, is an important research area today. Feeding behaviour and other lifestyle habits play a major role in optimising health and obesity control. Feeding behaviour is physiologically controlled through processes associated with energy and nutrient needs. Different brain nuclei are involved in the neural regulation of feeding behaviours. Therefore, understanding the function of these brain nuclei helps develop feeding control methods. Among important brain nuclei, there is scant literature on the central amygdala (CeA) nucleus and feeding behaviour. The CeA is one of the critical brain regions that play a significant role in various physiological and behavioural responses, such as emotional states, reward processing, energy balance, and feeding behaviour. It contains gamma-aminobutyric acid (GABA) neurons. Also, it is the major output region of the amygdaloidal complex. Moreover, the CeA is also involved in multiple molecular and biochemical factors and has extensive connections with other brain nuclei and their neurotransmitters, highlighting its role in feeding behaviour. This review aims to highlight the significance of the CeA nucleus on food consumption by its interaction with the performance of reward, digestive and emotional systems.


1998 ◽  
Vol 275 (2) ◽  
pp. R448-R459 ◽  
Author(s):  
Charles C. Horn ◽  
Mark I. Friedman

Whether administration of 2,5-anhydro-d-mannitol (2,5-AM) or methyl palmoxirate (MP) elicits eating behavior in rats depends on the composition of the maintenance diet. To assess whether specific brain sites are involved in triggering the eating responses to these metabolic inhibitors, we measured food intake and Fos-like immunoreactivity (Fos-li) in rats maintained on either a low-fat/high-carbohydrate (LF/HC) or high-fat/low-carbohydrate (HF/LC) diet. Rats fed the LF/HC diet increased food intake after administration of 2,5-AM (200 mg/kg ip) but not after treatment with MP (10 mg/kg po), whereas rats maintained on the HF/LC diet increased food intake in response to MP administration but not after 2,5-AM injection. The effects of these inhibitors on brain Fos-li in several specific brain nuclei paralleled those on feeding behavior; that is, the number of cells showing Fos-li increased only under dietary conditions in which 2,5-AM or MP stimulated eating. These results suggest that the eating response to metabolic inhibition is tied to increased neuronal activity in brain regions that process vagal afferent signals.


2020 ◽  
Vol 22 (1) ◽  
pp. 210
Author(s):  
Chrysostomos Charalambous ◽  
Marek Lapka ◽  
Tereza Havlickova ◽  
Kamila Syslova ◽  
Magdalena Sustkova-Fiserova

The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2–induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.


2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2007 ◽  
Vol 293 (4) ◽  
pp. R1468-R1473 ◽  
Author(s):  
Michael F. Wiater ◽  
Bryan D. Hudson ◽  
Yvette Virgin ◽  
Sue Ritter

Leptin reduces body fat selectively, sparing body protein. Accordingly, during chronic leptin administration, food intake is suppressed, and body weight is reduced until body fat is depleted. Body weight then stabilizes at this fat-depleted nadir, while food intake returns to normal caloric levels, presumably in defense of energy and nutritional homeostasis. This model of leptin treatment offers the opportunity to examine controls of food intake that are independent of leptin's actions, and provides a window for examining the nature of feeding controls in a “fatless” animal. Here we evaluate macronutrient selection during this fat-depleted phase of leptin treatment. Adult, male Sprague-Dawley rats were maintained on standard pelleted rodent chow and given daily lateral ventricular injections of leptin or vehicle solution until body weight reached the nadir point and food intake returned to normal levels. Injections were then continued for 8 days, during which rats self-selected their daily diet from separate sources of carbohydrate, protein, and fat. Macronutrient choice differed profoundly in leptin and control rats. Leptin rats exhibited a dramatic increase in protein intake, whereas controls exhibited a strong carbohydrate preference. Fat intake did not differ between groups at any time during the 8-day test. Despite these dramatic differences in macronutrient selection, total daily caloric intake did not differ between groups except on day 2. Thus controls of food intake related to ongoing metabolic and nutritional requirements may supersede the negative feedback signals related to body fat stores.


Sign in / Sign up

Export Citation Format

Share Document