scholarly journals Geochemical and Sr–Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco)

2013 ◽  
Vol 151 (4) ◽  
pp. 666-691 ◽  
Author(s):  
ABDERRAHIM ESSAIFI ◽  
SCOTT SAMSON ◽  
KATHRYN GOODENOUGH

AbstractIn the Variscan fold belt of Morocco, the Jebilet massif is characterized by Palaeozoic metasedimentary rocks intruded by syntectonic magmatism that includes an ultramafic–granitoid bimodal association and peraluminous granodiorites emplacedc. 330 Ma, intruded by younger leucogranitesc. 300 Ma. The mafic–ultramafic rocks belong to a tholeiitic series, and display chemical and isotopic signatures consistent with mixing between mantle-derived and crust-derived magmas or assimilation and fractional crystallization. The granites within the bimodal association are mainly metaluminous to weakly peraluminous microgranites that show characteristics of A2-type granites. The peraluminous, calc-alkaline series consists mainly of cordierite-bearing granodiorites enclosing magmatic microgranular enclaves and pelitic xenoliths. Detailed element and isotope data suggest that the alkaline and the peraluminous granitoids were formed in the shallow crust (<30 km) by partial melting of tonalitic sources at high temperatures (up to 900°C) and by partial melting of metasedimentary protoliths at relatively low temperatures (c. 750°C), respectively. Mixing between the coeval mantle-derived and crust-derived magmas contributed to the large variation of initial εNdvalues and initial Sr isotopic ratios observed in the granitoids. Further contamination occurred by wall-rock assimilation during ascent of the granodioritic plutons to the upper crust. The ultramafic–granitoid association has been intruded by leucogranites that have high initial Sr isotopic ratios and low initial εNdvalues, indicating a purely crustal origin. The heating events that caused emplacement of the Jebilet magmatism are related to cessation of continental subduction and convective erosion/thinning of the lithospheric mantle during plate convergence.

Petrology ◽  
2020 ◽  
Vol 28 (6) ◽  
pp. 569-590
Author(s):  
V. N. Sharapov ◽  
A. A. Tomilenko ◽  
G. V. Kuznetsov ◽  
Yu. V. Perepechko ◽  
K. E. Sorokin ◽  
...  

Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

Abstract Two suites of amphibole-rich mafic‒ultramafic rocks associated with the voluminous intermediate to felsic rocks in the Early Cretaceous Laiyuan intrusive-volcanic complex (North China Craton) are studied here by detailed petrography, mineral- and melt inclusion chemistry, and thermobarometry to demonstrate an in-situ reaction-replacement origin of the hornblendites. Moreover, a large set of compiled and newly obtained geochronological and whole-rock elemental and Sr-Nd isotopic data are used to constrain the tectono-magmatic evolution of the Laiyuan complex. Early mafic‒ultramafic rocks occur mainly as amphibole-rich mafic‒ultramafic intrusions situated at the edge of the Laiyuan complex. These intrusions comprise complex lithologies of olivine-, pyroxene- and phlogopite-bearing hornblendites and various types of gabbroic rocks, which largely formed by in-situ crystallization of hydrous mafic magmas that experienced gravitational settling of early-crystallized olivine and clinopyroxene at low pressures of 0.10‒0.20 GPa (∼4‒8 km crustal depth); the hornblendites formed in cumulate zones by cooling-driven crystallization of 55‒75 vol% hornblende, 10‒20 vol% orthopyroxene and 3‒10 vol% phlogopite at the expense of olivine and clinopyroxene. A later suite of mafic rocks occurs as mafic lamprophyre dikes throughout the Laiyuan complex. These dikes occasionally contain some pure hornblendite xenoliths, which formed by reaction-replacement of clinopyroxene at high pressures of up to 0.97‒1.25 GPa (∼37‒47 km crustal depth). Mass balance calculations suggest that the olivine-, pyroxene- and phlogopite-bearing hornblendites in the early mafic‒ultramafic intrusions formed almost without melt extraction, whereas the pure hornblendites brought up by lamprophyre dikes required extraction of ≥ 20‒30 wt% residual andesitic to dacitic melts. The latter suggests that fractionation of amphibole in the middle to lower crust through the formation of reaction-replacement hornblendites is a viable way to produce adakite-like magmas. New age constraints suggest that the early mafic-ultramafic intrusions formed during ∼132‒138 Ma, which overlaps with the timespan of ∼126‒145 Ma recorded by the much more voluminous intermediate to felsic rocks of the Laiyuan complex. By contrast, the late mafic and intermediate lamprophyre dikes were emplaced during ∼110‒125 Ma. Therefore, the voluminous early magmatism in the Laiyuan complex was likely triggered by the retreat of the flat-subducting Paleo-Pacific slab, whereas the minor later, mafic to intermediate magmas may have formed in response to further slab sinking-induced mantle thermal perturbations. Whole-rock geochemical data suggest that the early mafic magmas formed by partial melting of subduction-related metasomatized lithospheric mantle, and that the early intermediate to felsic magmas with adakite-like signatures formed from mafic magmas through strong amphibole fractionation without plagioclase in the lower crust. The late mafic magmas seem to be derived from a slightly different metasomatized lithospheric mantle by lower degrees of partial melting.


2003 ◽  
Vol 28 ◽  
Author(s):  
Santa Man Rai

Boron content in the rocks of central Nepal Himalaya depends upon the lithology and the grade of metamorphism. The concentration of boron is abundant (up to 322 ppm) in the metasedimentary rocks of the Lesser Himalaya. There seems to be a rather good correlation between the boron content in the rocks and the grade of metamorphism. The boron content progressively increases from chlorite to garnet isograds, then it systematically decreases in the staurolite±kyanite, kyanite and sillimanite isograds, respectively. This trend may be related to the inverse metamorphism associated with movement along the Main Central Thrust. The Manaslu leucogranite contains very high amount of boron (950 ppm). The enrichment of boron in this rock may be due to the release of boron from the Lesser Himalayan rocks during the partial melting of the Higher Himalayan Crystallines (Tibetan Slab) as a result of the movement along the MCT. Tourmaline from the Manaslu Granite is also highly rich in boron (8460 ppm).


1969 ◽  
Vol 6 (3) ◽  
pp. 399-425 ◽  
Author(s):  
D. C. Findlay

The Tulameen Complex is a composite ultramafic-gabbroic intrusion that outcrops over 22 sq. mi. (57 km2) in the Southern Cordillera of British Columbia. The complex intruded Upper Triassic metavolcanic and metasedimentary rocks of the Nicola Group, and on the basis of geologic relations and a K–Ar age determination (186 m.y.) is tentatively dated as Late Triassic.The principal ultramafic units — dunite, olivine clinopyroxenite, and hornblende clinopyroxenite — form an elongate, non-stratiform body whose irregular internal structure is best explained by deformation contemporaneous with crystallization of the rocks. The derivation of the ultramafic rocks is attributed to fractional crystallization of an ultrabasic magma. The gabbroic mass, which consists of syenogabbro and syenodiorite, partly borders and partly overlies the ultramafic body and was apparently intruded by it.The ultramafic and gabbroic parts of the complex probably formed from separate intrusions of different magmas, but the two suites have sufficient mineralogical and chemical features in common to indicate an ultimate petrogenic affinity of the magmas. Comparison of the Tulameen rocks with nearby intrusions of the same general age, in particular the Copper Mountain stock, suggests that they are members of a regional suite of alkalic intrusions. The possibility is also raised that these intrusions may be comagmatic with the Nicola volcanic rocks.


1988 ◽  
Vol 25 (8) ◽  
pp. 1323-1337 ◽  
Author(s):  
James H. Sevigny

Late Proterozoic amphibolites and ultramafic rocks from the southeastern Canadian Cordillera have been analysed for major and trace elements in order to determine the nature and origin of the protoliths. Geologic relations indicate that these rocks were produced during an episode of continental rifting in the Precambrian. Based on rare-earth-element (REE) patterns, immobile-incompatible-element ratios, and characteristic elemental abundances, amphibolites are subdivided into alkaline and tholeiitic metabasalts. Alkaline basalts are recognized by their steep REE patterns, high Zr/Y, high TiO2 and P2O5 abundances, and low Y/Nb and Ti/Zr. Tholeiitic basalts are subdivided into three groups: (I) high-Mg#, high-field-strength-element (HFSE)-depleted, light-REE (LREE)-enriched tholeiites with flat heavy REE (HREE) patterns; (II) LREE-enriched tholeiites depleted in HREE; and (III) low-Mg# tholeiites with flat REE patterns. Ultramafic rocks occur as boudins of partially recrystallized Cr-spinel-bearing harzburgite or therzolite, enriched in LREE (Ce/Sm = 1.7–1.9), HFSE, CaO, Al2O3, and TiO2 relative to depleted mantle.Geochemical data suggest that the basalts were derived from a heterogeneous mantle source that underwent different degrees of partial melting with variable amounts of subsequent crystal fractionation of the melts. High Mg#, high Cr and Ni abundances, low HFSE abundances, and high olivine saturation temperatures suggest that group I tholeiites are primary mantle melts produced by a relatively high degree of partial melting of a LREE-enriched, HFSE-depleted source. Group II and III basalts have undergone moderate olivine and pryoxene and limited plagioclase fractionation. Mass-balance calculations suggest that the ultramafic rocks represent a crustally contaminated primary-mantle-derived melt.Les éléments majeurs et traces des amphibolites et des ultramafites, d'âge protérozoïque tardif, du sud-est de la Cordillère canadienne ont été analysés dans le but de déterminer la nature et l'origine des protolithes. Les relations géologiques indiquent que ces roches se sont formées durant un épisode de rifting continental dans le Précambrien. Les diagrammes des terres rares, les rapports des éléments immobiles et incompatibles et les compositions chimiques caractéristiques ont permis de subdiviser les amphibolites en métabasaltes tholéiitiques et alcalins. Les basaltes alcalins sont reconnus par les courbes abruptes dans les diagrammes des terres rares, les rapports Zr/Y élevés et les fortes teneurs en TiO2 et P2O5 et les rapports Y/Nb et Ti/Zr faibles. Les basaltes tholéiitiques sont subdivisés en trois groupes : (I) avec Mg# élevé, appauvrissement en éléments de force de champ élevée, tholéiites enrichies en terres rares légères avec courbe horizontale des terres rares lourdes; (II) tholéiites enrichies en terres rares légères et appauvries en terres rares lourdes; et (III) tholéiites avec Mg# faible et avec courbe horizontale des variations des terres rares. Les ultramafites se présentent en boudins formés d'harzburgite incluant un spinelle chromifère partiellement recristallisé ou de therzolite qui sont enrichies en terres rares légères (Ce/Sm = 1,7–1,9), en éléments à force de champ élevée, en CaO, Al2O3 et TiO2, comparativement à un manteau appauvri.


2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


2019 ◽  
Vol 60 (7) ◽  
pp. 1299-1348 ◽  
Author(s):  
Claire E Bucholz ◽  
Christopher J Spencer

Abstract Strongly peraluminous granites (SPGs) form through the partial melting of metasedimentary rocks and therefore represent archives of the influence of assimilation of sedimentary rocks on the petrology and chemistry of igneous rocks. With the aim of understanding how variations in sedimentary rock characteristics across the Archean–Proterozoic transition might have influenced the igneous rock record, we compiled and compared whole-rock chemistry, mineral chemistry, and isotope data from Archean and Paleo- to Mesoproterozoic SPGs. This time period was chosen as the Archean–Proterozoic transition broadly coincides with the stabilization of continents, the rise of subaerial weathering, and the Great Oxidation Event (GOE), all of which left an imprint on the sedimentary rock record. Our compilation of SPGs is founded on a detailed literature review of the regional geology, geochronology, and inferred origins of the SPGs, which suggest derivation from metasedimentary source material. Although Archean and Proterozoic SPGs are similar in terms of mineralogy or major-element composition owing to their compositions as near-minimum melts in the peraluminous haplogranite system, we discuss several features of their mineral and whole-rock chemistry. First, we review a previous analysis of Archean and Proterozoic SPGs biotite and whole-rock compositions indicating that Archean SPGs, on average, are more reduced than Proterozoic SPGs. This observation suggests that Proterozoic SPGs were derived from metasedimentary sources that on average had more oxidized bulk redox states relative to their Archean counterparts, which could reflect an increase in atmospheric O2 levels and more oxidized sedimentary source rocks after the GOE. Second, based on an analysis of Al2O3/TiO2 whole-rock ratios and zircon saturation temperatures, we conclude that Archean and Proterozoic SPGs formed through partial melting of metasedimentary rocks over a similar range of melting temperatures, with both ‘high-’ and ‘low-’temperature SPGs being observed across all ages. This observation suggests that the thermo-tectonic processes resulting in the heating and melting of metasedimentary rocks (e.g. crustal thickening or underplating of mafic magmas) occurred during generation of both the Archean and Proterozoic SPGs. Third, bulk-rock CaO/Na2O, Rb/Sr, and Rb/Ba ratios indicate that Archean and Proterozoic SPGs were derived from partial melting of both clay-rich (i.e. pelites) and clay-poor (i.e. greywackes) source regions that are locality specific, but not defined by age. This observation, although based on a relatively limited dataset, indicates that the source regions of Archean and Proterozoic SPGs were similar in terms of sediment maturity (i.e. clay component). Last, existing oxygen isotope data for quartz, zircon, and whole-rocks from Proterozoic SPGs show higher values than those of Archean SPGs, suggesting that bulk sedimentary 18O/16O ratios increased across the Archean–Proterozoic boundary. The existing geochemical datasets for Archean and Proterozoic SPGs, however, are limited in size and further work on these rocks is required. Future work must include detailed field studies, petrology, geochronology, and constraints on sedimentary source ages to fully interpret the chemistry of this uniquely useful suite of granites.


Author(s):  
Peng Gao ◽  
Yong-Fei Zheng ◽  
Matthew Jason Mayne ◽  
Zi-Fu Zhao

Himalayan leucogranites of Cenozoic age are generally attributed to partial melting of metasedimentary rocks at low temperatures of &lt;770 °C. It is unknown what the spatial distribution and characteristics of high-temperature (&gt;800 °C) leucogranites are in the Himalayan orogen. The present study reports the occurrence of such leucogranites in the collisional orogen. We use the Ti-in-zircon thermometry in combination with the thermodynamically calibrated relationships of T-aSiO2-aTiO2 to retrieve crystallization temperatures of Miocene (ca. 17 Ma) two-mica granites from Yalaxiangbo, in the eastern Himalaya, SE Tibet. The results give the maximum temperature as high as ∼850 °C for granite crystallization, providing a significant constraint on the nature of thermal sources. Phase equilibrium modeling using metasedimentary rocks as the source rocks indicates that felsic melts produced at ∼850 °C and 6−10 kbar can best match the target leucogranites in lithochemistry. In this regard, the anatectic temperatures previously obtained for the production of Himalayan leucogranites would probably be underestimated to some extent. Such high temperatures are difficult to explain purely by the internal heating of the thickened orogenic crust. Instead, they require an extra heat source, which would probably be provided by upwelling of asthenospheric mantle subsequent to thinning of the orogenic lithospheric mantle by foundering along the convergent plate boundary. Therefore, the Himalayan leucogranites of Miocene age would be derived from partial melting of the metasedimentary rocks in the post-collisional stage.


1989 ◽  
Vol 126 (4) ◽  
pp. 397-405 ◽  
Author(s):  
D. E. Kitchen

AbstractA regional Tertiary basaltic dyke swarm intensifies within a Caledonian granite at Barnesmore, Co. Donegal. Rapid heating along the contact of one (possible feeder) dyke resulted in disequilibrium partial melting of granite wall-rock and the generation of a range in melt composition by the in situ melting of feldspar. The compositional variability of the melt is preserved in a glass containing feldspar spherulites and other quench phases which suggest rapid cooling. During partial melting the trace elements, Rb, Sr, and Ba were mobile and have been concentrated in glassy melted granite close to the contact of one dyke. The textures, mineralogy and geochemistry of dolerite in two dykes indicate localized bulk contamination and mixing with melted granite. This had a particularly marked effect on the crystallization of pyroxene and resulted in a wide range in mineral composition reflecting the degree of contamination. The intensification of a regional dyke swarm in well-jointed granite might control the siting of some major intrusive centres. Granite melted and mixed with basaltic magma may contribute to the evolution of granites in such centres.


1991 ◽  
Vol 28 (6) ◽  
pp. 899-911 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
David A. Brew

U–Pb geochronologic studies demonstrate that steeply dipping, sheetlike tonalitic plutons along the western margin of the northern Coast Mountains batholith were emplaced between ~83 and ~57 (perhaps ~55) Ma. Less elongate tonalitic–granodioritic bodies in central portions of the batholith yield ages of 59–58 Ma, coeval with younger phases of the tonalitic sheets. Large granite–granodiorite bodies in central and eastern portions of the batholith were emplaced at 51–48 Ma. Trends in ages suggest that the tonalitic bodies generally become younger southeastward and that, at the latitude of Juneau, plutonism migrated northeastward across the batholith at ~0.9 km/Ma. Variations in the age, shape, location, and degree of fabric development among the various plutons indicate that Late Cretaceous – Paleocene tonalitic bodies were emplaced into a steeply dipping, dip-slip shear zone that was active along the western margin of the batholith. Postkinematic Eocene plutons were emplaced at shallow crustal levels. Inherited zircon components in these plutons range in age from mid-Paleozoic to Early Proterozoic and are coeval with detrital zircons in adjacent metasedimentary rocks. These old zircons, combined with evolved Nd isotopic signatures for most plutons, record assimilation of continental crustal or supracrustal rocks during the generation and (or) ascent of the plutons.


Sign in / Sign up

Export Citation Format

Share Document