Growth performances, nutrient utilization and carcass traits in broiler chickens fed with a normal and a low energy diet supplemented with inorganic chromium (as chromium chloride hexahydrate) and a combination of inorganic chromium and ascorbic acid

2005 ◽  
Vol 143 (5) ◽  
pp. 427-439 ◽  
Author(s):  
N. AHMED ◽  
S. HALDAR ◽  
M. C. PAKHIRA ◽  
T. K. GHOSH

Diets for broiler chickens (n=90) were supplemented with chromium (CrCl3, 6H2O), either alone (0·2 mg/kg diet) or in a combination with ascorbic acid (0·2 mg Cr and 50 mg ascorbic acid/kg diet). The objectives of the study were to ascertain if ascorbic acid had any additive effect on the actions of chromium and whether chromium supplementation could alleviate the nutritional stress in the birds imposed by a reduced energy intake. The birds were fed at the recommended (Bureau of Indian Standards 1992) and at a lower plane of energy. Live-weight gain and diet utilization were higher (P<0·01) when the normal energy diet supplemented with chromium was fed. Food intake (35 days) was higher (P<0·001) in the birds fed with the low energy diet. There was an increase (P<0·01) in metabolizability due to the supplementation of chromium. The metabolizability of crude protein and total carbohydrate increased (P<0·05) when chromium and ascorbic acid were supplemented together. Chromium intake was higher (P<0·001) in the supplemented birds, especially in those fed with the low energy diet (P<0·05), though its retention was higher (P<0·05) when the normal energy diet was given. Chromium in combination with ascorbic acid also enhanced (P<0·01) chromium retention. Blood glucose (P<0·001) and plasma cholesterol (P<0·05) were lower in the supplemented birds and blood glucose was reduced further when ascorbic acid was supplemented together with chromium (P<0·01). Plasma protein increased (P<0·05) in the supplemented chickens. However, variation in the dietary energy concentration did not exert any significant effect on these blood parameters. Plasma chromium was higher (P<0·05) in the supplemented birds, though chromium had little effect in this regard with ascorbic acid. Plasma copper increased (P<0·05) when chromium was supplemented alone and increased further (P<0·05) when chromium and ascorbic acid were supplemented together. Deposition of chromium in the breast and thighs increased (P<0·05) due to supplementation. Protein content and total accretion of protein in the carcass were higher (P<0·05) when chromium was supplemented alone and with ascorbic acid. The supplemented birds had less (P<0·01) fat per 100 g of carcass irrespective of the dietary energy concentration. Weight of the hot carcass increased (P<0·05) due to chromium supplementation although dietary energy concentration did not affect this particular parameter. It was concluded that inorganic chromium supplementation (0·2 mg chromium/kg diet) might effectively enhance the growth performance, diet utilization and carcass characteristics in broiler chickens. Addition of ascorbic acid might also be beneficial in this regard. However, dietary energy concentration was more critical and to yield the maximum benefit of Cr supplementation in broiler chickens, an optimum level was essential.

2001 ◽  
Vol 136 (4) ◽  
pp. 461-470 ◽  
Author(s):  
R. J. EARLY ◽  
O. MAHGOUB ◽  
C. D. LU

The effects of dietary energy concentration on tissue composition and nitrogen metabolism were determined by comparative slaughter and nitrogen balance trials in Omani male lambs during the hot summer months (July to October; maximum temperature 48 °C). Weaned lambs (n = 10 per diet) were fed on one of three isonitrogenous (160 CP g/kg DM) diets that contained low (9·98 MJ/kg DM), medium (10·3 MJ/kg DM) and high (11·4 MJ/kg DM) metabolizable energy contents. An initial slaughter group of 10 animals was used to estimate the initial body composition. Treatment animals were slaughtered at 113–114 days. Increasing dietary energy concentrations resulted in a progressive increase in empty body, carcass and non-carcass water, protein and fat contents. Increasing dietary energy concentrations also resulted in a greater deposition of energy in carcass fat and a reduced deposition of energy in carcass protein. Dietary energy concentration did not affect the distribution of energy between protein and fat within empty body and non-carcass tissues. Ratios of energy to empty body, carcass or non-carcass weight were not affected by dietary energy concentrations and averaged 17·1, 18·2 and 15·9 MJ/kg respectively. These data indicate that more energy is required to deposit carcass tissues than non-carcass tissues. Nitrogen balance trials (feed N–faecal N–urinary N) conducted midway through the experiment indicated that dietary energy concentration had no effect on nitrogen digestibility or nitrogen retention. However, nitrogen retention determined by comparative slaughter showed that animals fed the low energy diet retained significantly less empty body nitrogen compared to animals fed the high energy diet. Thus, nitrogen retention determined by nitrogen balance trials overestimated direct measurements of nitrogen retention determined by comparative slaughter and this overestimation was greater on the low energy diet.


1970 ◽  
Vol 12 (3) ◽  
pp. 413-418 ◽  
Author(s):  
M. Kay ◽  
N. A. MacLeod ◽  
Margaret McLaren

SUMMARY1. A growth and digestibility trial was carried out with 27 British Friesian calves given diets having either 3·1, 2·8 or 2·4 Meal metabolizable energy per kg dry matter and either the same concentration of protein or the same protein-to-energy ratio.2. Daily dry-matter intake and rate of gain in live weight increased significantly as the energy concentration of the diet was reduced. There were no significant differences in digestible-energy intake between calves given the different diets, although the trend was the same as for dry-matter intake.3. Both dry-matter digestibility and energy digestibility were lowest for the low-energy diet.


1982 ◽  
Vol 34 (1) ◽  
pp. 63-70 ◽  
Author(s):  
N. Baishya ◽  
S. V. Morant ◽  
G. S. Pope ◽  
J. D. Leaver

ABSTRACTIn each of 2 years, two groups of 25 British Friesian heifers were given, respectively, a moderate- and a low-energy diet for a 12-week period. Mean live-weight gains of 0·25 kg/day and 0·45 kg/day were recorded for the moderate-energy diet, and losses of 0·22 kg/day and 013 kg/day for the low-energy diet. Heifers were inseminated artificially at oestrus at approximately the mid-point of the 12-week period, this oestrus being the next observed after synchronized oestrus, which followed luteolysis induced by cloprostenol injections. With few exceptions, heifers that gained weight were in good or medium condition at insemination and those that lost weight were in medium or poor condition.Highest pregnancy rate (0·78) was recorded for heifers that gained weight and were in medium condition at insemination. For heifers losing weight, pregnancy rate dropped to 0·46 (P < 0·05) due to reproductive failure occurring before the 25th day after insemination. Only in heifers in poor body condition was there a significantly higher proportion failing to ovulate normally (P < 0·001). Among heifers gaining weight, those failing to become pregnant to the first insemination were approximately lOOg/kg heavier than the pregnant ones (P<0·05).Irrespective of gain or loss of weight, and of body condition at insemination, embryo losses did not occur later than the 25th day after insemination, except that five heifers that showed oestrus when pregnant (according to plasma progesterone levels) and were reinseminated then showed evidence of embryo loss.


1967 ◽  
Vol 9 (1) ◽  
pp. 107-113 ◽  
Author(s):  
J. B. Owen ◽  
W. J. Ridgman

1. An experiment to investigate the effect of dietary energy concentration on the voluntary intake and growth of pigs from 27·2 to 118·0 kg. (60 to 260 lb.) live-weight is described and the results discussed.2. From 27·2 to 50·0 kg. live-weight energy intake was substantially restricted and growth retarded by diets of low energy concentration but from 50·0 to 118·0 kg. there was little difference between diets in either energy intake or growth because daily food intake of the low energy diets was increased.3. Effects of diet on carcass quality as measured by full dissection were small except that killing-out percentage was lower on one of the low energy diets.4. It is concluded that limited differences in the energy concentration and palatability of ingredients are unimportant in formulating pelleted diets for self-fed pigs.


1986 ◽  
Vol 42 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Y. Zhang ◽  
I. G. Partridge ◽  
K. G. Mitchell

ABSTRACTFour diets were formulated from cereals, animal and vegetable protein supplements and tallow, to contain digestible energy (DE) concentrations of 14·1 or 17·1 MJ/kg and crude protein concentrations of 12·7 or 17·0 g/MJ DE in a 2 X 2 factorial design. In each of two experiments, pigs were weaned and allocated to dietary treatments when 21 days old and were fed twice daily to appetite. In experiment 1, six replicates of four male littermates were used. They were individually fed in metabolism cages and continuous energy and nitrogen (N) balances were made from 28 to 63 days of age. In experiment 2, three male and three female pigs were slaughtered at weaning to determine initial body composition, and three replicates of four littermates of each sex were allocated to the dietary treatments. The latter were fed in treatment groups in flat-deck pens and slaughtered at 63 days of age.In experiment 1, increased energy concentration reduced food intake only slightly and improved liveweight gain and food: gain ratio; higher protein concentration increased gains only at lower energy concentration. Daily N balance improved with increased energy and protein concentration but the response to protein was greater with the low energy diet. Dietary energy was efficiently utilized even with 163 g tallow per kg diet. From 63 days of age until slaughter at 60 kg all pigs were given the same grower diet to appetite. Performance was not affected by previous treatments.In experiment 2, food intakes were higher than in experiment 1 and tended to be reduced to a greater extent with the higher energy concentration; live-weight gains were similar for all treatments and food: gain ratio tended to improve in response to higher energy and protein concentrations. Dietary energy level had no effect on carcass fat content but the higher protein level reduced fat deposition. N retention tended to be lower for the low energy, low protein diet compared with the other three diets. Dietary effects on the amino-acid composition of the carcass were small. Carcass amino-acid ratios at 3 and 9 weeks were similar to published values and there was a tendency for higher amino-acid concentrations (g/16 g N) at 9 weeks than at 3 weeks.


Author(s):  
K. Shibi Thomas ◽  
R. Amutha ◽  
M. R. Purushothaman ◽  
P. N. Richard Jagatheesan ◽  
S. Ezhil Valavan

Two biological trials were conducted to determine the energy and lysine requirements of “TANUVAS Namakkal gold Japanese quail” for production performance. The economic impact of different levels energy and lysine during the chick (0-2 weeks) and grower (3-5 weeks) phases was assessed using seven hundred and twenty straight-run, day-old chicks randomly grouped in nine treatments with four replicates of twenty chicks each. Three levels of energy (2800, 2900 and 3000 kcal/kg) and three levels of lysine (1.2, 1.3 and 1.4%) were tested for chick and grower phase of the first experiment. The net profit per bird (Rs. 8.49) was high in group T1 (low energy and low lysine) and the net profit per kg live weight (Rs. 48.57) was high in T2 (2900 kcal/kg and 1.2%). For the second experiment an energy level of 2700, 2800 and 2900 kcal/kg was fixed for chick and grower mash, lysine level of 1.2, 1.3 and 1.4% was fixed for chick phase and 1.1, 1.2 and 1.3% for grower phase and the crude protein level was fixed as 20.3 and 19.4 per cent for chick and grower mash respectively for the second trial. The net profit per bird (Rs. 7.18) was high in group T6 and the net profit per kg live weight (Rs. 37.62) was high in T6 (2900 kcal/kg and 1.3% lysine during chick phase and 1.2% lysine during the grower phase).


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 109 ◽  
Author(s):  
Xiaokang Lv ◽  
Kai Cui ◽  
Minli Qi ◽  
Shiqin Wang ◽  
Qiyu Diao ◽  
...  

Supplying sufficient nutrients, such as dietary energy and protein, has a great effect on the growth and rumen development of ruminants. This study was conducted to evaluate the effects of dietary energy and protein levels on growth performance, microbial diversity, and structural and physiological properties of the rumen in weaned lambs. A total of 64 two-month-old Hu lambs were randomly allotted to 2 × 2 factorial arrangements with four replicates and with four lambs (half male and half female) in each replicate. The first factor was two levels of dietary metabolizable energy (ME) density (ME = 10.9 MJ/Kg or 8.6 MJ/Kg), and the second factor was two levels of dietary crude protein (CP) content (CP = 15.7% or 11.8%). The trial lasted for 60 days. A low dietary energy level restrained the growth performance of lambs (p < 0.05). The ruminal concentration of acetate and the ratio of acetate to propionate increased but the propionate concentration decreased significantly with the low energy diet. However, the rumen morphology was not affected by the diet energy and protein levels. Moreover, a low energy diet increased ruminal bacterial diversity but reduced the abundance of the phylum Proteobacteria (p < 0.05) and genus Succinivibrionaceae_uncultured (p < 0.05), which was associated with the change in ruminal fermentation phenotypes. By indicator species analysis, we found three indicator OTUs in the high energy group (Succinivibrionaceae_uncultured, Veillonellaceae_unclassified and Veillonellaceae_uncultured (p < 0.01)) and two indicator OTUs in the low energy group (Bacteroidales_norank and Lachnospiraceae_uncultured (p < 0.01)). In conclusion, these findings added new dimensions to our understanding of the diet effect on rumen microbial community and fermentation response, and are of great significance for establishing the optimal nutrient supply strategy for lambs.


1976 ◽  
Vol 22 (2) ◽  
pp. 207-215
Author(s):  
P. J. Broadbent ◽  
C. Ball ◽  
T. L. Dodsworth

SUMMARY1. Two experiments are described in which castrated Ayrshire cattle were reared on a conventional all-concentrate diet to 250 kg live weight. In Experiment 1 the effect of feeding a 1: 1 mixture (by weight) of barley and wet distiller's grains (WDG) from 250 to 408 kg live weight was examined. In Experiment 2 swedes and grass silage were offered in addition to WDG and barley during the growth phase from 250 kg live weight to slaughter. In both experiments a control group was fed an all-concentrate diet.2. The introduction of WDG to the diet (Experiment 1) caused a significantly lower daily live-weight gain (P < 0·01) and an increase i n time to slaughter (P < 0·01). Carcasses from the control and treated animals were similar in weight, conformation and composition. There were no differences in growth rates in Experiment 2. The treated animals were heavier (P < 0·01) and older at slaughter (P < 0·001) than those in the control group and they produced heavier carcasses (P < 0·05). The carcasses were similar in composition but some differences in conformation occurred. These effects were the consequence of selecting animals for slaughter on the basis of equal finish (i.e. the ratio of muscle plus fat to bone assessed subjectively).3. The effect of reducing the dietary energy concentration appears t o be smaller with cattle over 250 kg live weight than with younger, lighter cattle. The results, which are discussed in economic terms, suggest that castrated Ayrshire cattle reared on all-concentrate diets should be changed to a diet of lower energy concentration using cheaper feed sources at 250 kg live weight.


1998 ◽  
Vol 67 (1) ◽  
pp. 117-129 ◽  
Author(s):  
T. A. Van Lunen ◽  
D. J. A. Cole

AbstractAn experiment was conducted to examine the effects of dietary lysine/digestible energy (DE) ratio (g/MJ) and dietary energy concentration on growth performance and body composition of young hybrid gilts from 9·1 to 25·4 kg live weight. Seven pigs were assigned to each of 10 dietary treatments consisting of lysine/DE ratios from 0·6 to 1·4 in 0·2 g/MJ increments and two DE concentrations (14·25 and 16·40 MJ/kg). Food was provided ad libitum and at 25·4 kg all pigs were slaughtered and body composition was determined. Responses to lysine/DE ratios were different for each DE concentration. The pigs given the 16·40 MJ/kg DE diets had a higher daily live-weight gain (DLWG) and nitrogen deposition rate (NDR) than those given the 14·25 MJ/kg diets up to the 1·2 g/MJ lysine/DE ratio. Beyond this point no DE effects were evident. Lipid deposition rate (LDR) was higher for all 16·40 MJ/kg diets as compared with the 14·25 MJ/kg diets and decreased with increasing lysine/DE ratio. The 14·25 MJ/kg diets resulted in increasing efficiency of nitrogen and gross energy utilization with increasing lysinel DE ratio up to the 1·0 g/MJ ratio after which it declined. Efficiency of lipid utilization decreased with increasing lysine/DE ratio for all 14·25 MJ/kg diets. The 16·40 MJ/kg diets resulted in a decrease in nitrogen and gross energy utilization efficiency with increasing lysine/DE ratio while lipid efficiency decreased up to the 1·0 g/MJ lysine/DE ratio after which it increased. Young hybrid pigs given high energy diets appear to be less sensitive to dietary lysine/DE ratio than those given lower energy diets. The optimum lysine/DE ratio for the genotype tested from 9 to 25 kg live weight was of the order of 1·2 g/MJ for both DE concentrations. The maximum DLWG and NDR of the genotype tested over the live-weight range of 9 to 25 kg appears to be of the order of 620 and 17 g/day (106 g/day protein deposition rate) respectively.


Sign in / Sign up

Export Citation Format

Share Document