Interaction between the blood fluke,Sanguinicola inermisand humoral components of the immune response of carp,Cyprinus carpio

Parasitology ◽  
2005 ◽  
Vol 131 (2) ◽  
pp. 261-271 ◽  
Author(s):  
M. L. ROBERTS ◽  
J. W. LEWIS ◽  
G. F. WIEGERTJES ◽  
D. HOOLE

The effect ofSanguinicola inermison serum antibody and complement activity inCyprinus carpiowas assessed using an ELISA and haemolytic assays. Possible immune evasion strategies were assessed using immunodetection of host proteins on the surface of the parasite. Carp acclimatized to 20 or 25 °C were infected by exposure to 500 cercariae or injected intraperitoneally with 150 cercariae, and serum monitored over a 63-day period. In cercariae-injected carp, irrespective of time and temperature, a significant increase occurred in complement activity being greatest at 25 °C. In addition, fish exposed to the cercariae ofS. inermisand maintained at 20 °C the level of complement activity was significantly higher after 5 weeks compared to controls. At 20 °C intraperitoneal injections of parasites increased serum antibody levels which peaked after 7 days. In contrast, at 25 °C, antibody levels were maintained over 63 days. Exposure of fish to infection did not appear to stimulate antibody production. Immunofluorescence studies revealed ‘host-like’ molecules on the surface of the cercarial body exposed to carp serum and adult flukes obtained directly from the fish or cultured for 24 h in L15 medium. The possible role of ‘host-like’ molecules in immune evasion is discussed and the response at different temperatures is related to infection dynamics.

Parasitology ◽  
1999 ◽  
Vol 118 (6) ◽  
pp. 635-639 ◽  
Author(s):  
P. NIE ◽  
D. HOOLE

The humoral antibody response and the number of pronephric antibody-secreting cells were examined in naturally Bothriocephalus acheilognathi-infected carp. Cyprinus carpio, and in those injected intraperitoneally with an extract of the cestode. In the extract-injected fish, specific antibody was detected 3 weeks after a second injection given 2 weeks after the primary injection, and antibody levels persisted for more than 200 days. A third injection also enhanced the antibody level in the extract-injected carp. The numbers of antibody-secreting cells were significantly higher in carp injected 3 times with the extract than in the control. In naturally-infected fish, the serum antibody levels and the number of pronephric antibody-secreting cells were higher in infected fish than in uninfected individuals although this difference was not statistically significant. The relevance of these results to immune protection against infection is discussed.


2000 ◽  
Vol 74 (3) ◽  
pp. 253-257 ◽  
Author(s):  
P. Nie ◽  
D. Hoole

AbstractAn in vitro assay was used to examine the effect of Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Pseudophyllidea) on the polarization response of pronephric leucocytes of carp, Cyprinus carpio. Leucocytes, isolated from naive, naturally-infected fish and carp injected intraperitoneally with cestode extracts, were exposed to parasite extracts (protein concentrations 0–10.0 μg ml-1), for up to 24 h in the presence or absence of carp serum. In general, polarization responses of the pronephric leucocytes, primarily neutrophils and eosinophils, increased with incubation time although there was no significant difference in the response induced by the different protein concentrations. Differences in the polarization response were, however, observed in naive, naturally infected and injected fish and the cells responded differently in the presence and absence of carp serum. In the absence of carp serum the polarization response of pronephric leucocytes in vitro was significantly reduced with cells obtained from injected and naturally infected fish compared with those obtained from naive carp. This suppression of leucocyte migration was however reduced by the addition of carp serum to the in vitro system. The role of this interaction between the possible suppression of polarization induced by the parasite and stimulation by serum is discussed.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 637
Author(s):  
Victoria Peer ◽  
Khitam Muhsen ◽  
Moshe Betser ◽  
Manfred S Green

Pertussis containing vaccine is recommended for pregnant women to protect neonates prior to being fully immunized against the disease. The immune response during pregnancy may be impacted by changes in the hormonal status. The aim of this study was to evaluate the immune response to pertussis immunization in pregnancy and to assess the role of sex hormones. In a cross-sectional study, blood samples were drawn from 174 pregnant and 74 non-pregnant women 45–60 days following immunization. Anti-pertussis toxin (Anti-PT) IgG antibody levels, estrogen, and progestogen concentrations were compared between the two groups. Multiple logistic regression analysis was used to examine the association between serum antibody and sex hormone concentrations in each group, controlling for age, body mass index (BMI), and smoking status. The geometric mean concentration (GMC) of anti-PT IgG antibody was significantly higher in non-pregnant women compared with pregnant women (median of 2.09 and 1.86, interquartile range = 2.36–1.8 and 2.11–1.16 respectively, p < 0.0001). Among pregnant women, the anti-PT IgG antibody GMC was negatively associated with both progesterone (odds ratio = 0.300, 95% CI = 0.116, 0.772, p = 0.013) and estrogen (odds ratio = 0.071, 95% CI = 0.017, 0.292, p < 0.0001), after controlling for age, BMI, and smoking. Pregnancy was associated with lower anti-PT IgG antibody levels (odds ratio = 0.413, 95% CI = −0.190, 0.899, p = 0.026). This appears to be at least partially explained by the higher levels of hormones during pregnancy. These findings demonstrate the important role of sex hormones in the response to pertussis vaccine during pregnancy and can help to evaluate the optimum vaccination schedule.


2021 ◽  
Vol 219 ◽  
pp. 112318
Author(s):  
Sib Sankar Giri ◽  
Min Jung Kim ◽  
Sang Guen Kim ◽  
Sang Wha Kim ◽  
Jeong Woo Kang ◽  
...  

Parasitology ◽  
2021 ◽  
Vol 148 (5) ◽  
pp. 623-629
Author(s):  
Raed Taha Al-Neama ◽  
Kevin J. Bown ◽  
Damer P. Blake ◽  
Richard J. Birtles

Abstract


2021 ◽  
Vol 9 (5) ◽  
pp. 891
Author(s):  
Takashi Hatano ◽  
Daisuke Sano ◽  
Hideaki Takahashi ◽  
Nobuhiko Oridate

The incidence of oropharyngeal cancer (OPC) is increasing remarkably among all head and neck cancers, mainly due to its association with the human papillomavirus (HPV). Most HPVs are eliminated by the host’s immune system; however, because HPV has developed an effective immune evasion mechanism to complete its replication cycle, a small number of HPVs are not eliminated, leading to persistent infection. Moreover, during the oncogenic process, the extrachromosomal HPV genome often becomes integrated into the host genome. Integration involves the induction and high expression of E6 and E7, leading to cell cycle activation and increased genomic instability in the host. Therefore, integration is an important event in oncogenesis, although the associated mechanism remains unclear, especially in HPV-OPC. In this review, we summarize the current knowledge on HPV-mediated carcinogenesis, with special emphasis on immune evasion and integration mechanisms, which are crucial for oncogenesis.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 663
Author(s):  
Yu Yuan ◽  
Abdalla Adam ◽  
Chen Zhao ◽  
Honglei Chen

Release of immunoreactive negative regulatory factors such as immune checkpoint limits antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resistance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. In this review, we described the utility of PD-L1 expression levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways. Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was also summarized.


2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Sign in / Sign up

Export Citation Format

Share Document