scholarly journals Albendazole solid dispersions against alveolar echinococcosis: a pharmacotechnical strategy to improve the efficacy of the drug

Parasitology ◽  
2020 ◽  
Vol 147 (9) ◽  
pp. 1026-1031
Author(s):  
Julia Fabbri ◽  
Patricia Eugenia Pensel ◽  
Clara María Albani ◽  
Lurdes Milagros Lopez ◽  
Analia Simonazzi ◽  
...  

AbstractAlveolar echinococcosis is a neglected parasitic zoonosis caused by Echinococcus multilocularis. The pharmacological treatment is based on albendazole (ABZ). However, the low water solubility of the drug produces a limited dissolution rate, with the consequent failure in the treatment of the disease. Solid dispersions are a successful pharmacotechnical strategy to improve the dissolution profile of poorly water-soluble drugs. The aim of this work was to determine the in vivo efficacy of ABZ solid dispersions using poloxamer 407 as a carrier (ABZ:P407 solid dispersions (SDs)) in the murine intraperitoneal infection model for secondary alveolar echinococcosis. In the chemoprophylactic efficacy study, the ABZ suspension, the ABZ:P407 SDs and the physical mixture of ABZ and poloxamer 407 showed a tendency to decrease the development of murine cysts, causing damage to the germinal layer. In the clinical efficacy study, the ABZ:P407 SDs produced a significant decrease in the weight of murine cysts. In addition, the SDs produced extensive damage to the germinal layer. The increase in the efficacy of ABZ could be due to the improvement of water solubility and wettability of the drug due to the surfactant nature of poloxamer 407. In conclusion, this study is the basis for further research. This pharmacotechnical strategy might in the future offer novel treatment alternatives for human alveolar echinococcosis.

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2015 ◽  
Vol 51 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Josimar Oliveira Eloy ◽  
Juliana Saraiva ◽  
Sérgio de Albuquerque ◽  
Juliana Maldonado Marchetti

Ursolic acid is a promising candidate for treatment of Chagas disease; however it has low aqueous solubility and intestinal absorption, which are both limiting factors for bioavailability. Among the strategies to enhance the solubility and dissolution of lipophilic drugs, solid dispersions are growing in popularity. In this study, we employed a mixture of the surfactants poloxamer 407 with sodium caprate to produce a solid dispersion containing ursolic acid aimed at enhancing both drug dissolution and in vivo trypanocidal activity. Compared to the physical mixture, the solid dispersion presented higher bulk density and smaller particle size. Fourier Transform Infrared Spectroscopy results showed hydrogen bonding intermolecular interactions between drug and poloxamer 407. X-ray diffractometry experiments revealed the conversion of the drug from its crystalline form to a more soluble amorphous structure. Consequently, the solubility of ursolic acid in the solid dispersion was increased and the drug dissolved in a fast and complete manner. Taken together with the oral absorption-enhancing property of sodium caprate, these results explained the increase of the in vivo trypanocidal activity of ursolic acid in solid dispersion, which also proved to be safe by cytotoxicity evaluation using the LLC-MK2 cell line.


Author(s):  
Samer K. Ali ◽  
Eman B. H. Al-Khedairy

            Atorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.           The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxamer 407were used as hydrophilic carriers and Aerosil 200, Aerosil 300 and magnesium aluminium silicate (MAS) as adsorbents.            All solid dispersion adsorbate (SDA) formulas  were prepared in ratios of 1:1:1  (drug: carrier: adsorbent) and evaluated for their water solubility, percentage yield, drug content,  , dissolution, crystal structure using  X-ray powder diffraction (XRD) and Differential Scanning Calorimetry (DSC)  studies and Fourier Transform Infrared Spectroscopy (FTIR) for determination the drug-carrier- adsorbate interaction.                The prepared (SDA) showed significant improvement of drug solubility in all prepared formula. Best result was obtained with formula SDA12(ATR :Poloxamer407 : MAS 1:1:1) that showed 8.07 and 5.38  fold increase in solubility compared to  solubility of pure ATR and  solid dispersion(SD4) (Atorvastatin: Poloxamer 407 1:1) respectively due to increased wettability and reduced crystallinity of the drug which leads to improve drug solubility  and  dissolution .


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2196 ◽  
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 573 ◽  
Author(s):  
Wang ◽  
Wu ◽  
Wang ◽  
Wang ◽  
Zhao

Honokiol (HK), a well-tolerated natural product, has many multiple pharmacological activities. However, its poor water solubility and low bioavailability limit its clinical application and development. The aim of this research was to prepare the solid dispersion (SD) formulation of honokiol (HK) with poloxamer-188 (PLX) as the carrier, thereby improving its solubility and oral bioavailability. Firstly, by investigating the relationship between the addition amount of the PLX and the solubility of HK, and the effects of solid dispersions with different ratios of HK–PLX on the solubility of HK, we determined that the optimum ratio of PLX to HK was (1:4). Then, the HK–PLX (1:4) SD of HK was prepared using the solvent evaporation method. The morphology of the obtained HK–PLX (1:4) SD was different from that of free HK. The HK in the HK–PLX (1:4) SD existed in amorphous form and formed intermolecular hydrogen bonds with PLX. Additionally, the solubility values of the HK–PLX (1:4) SD were about 32.43 ± 0.36 mg/mL and 34.41 ± 0.38 mg/mL in artificial gastric juice (AGJ) and in artificial intestinal juice (AIJ), respectively. Compared with free HK, the release rate and the bioavailability was also substantially improved for HK in its SD form. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that the HK–PLX (1:4) SD showed higher inhibition of HepG2 cells than free HK. Taken together, the present study suggests that the HK–PLX (1:4) SD could become a new oral drug formulation with high bioavailability and could produce a better response for clinical applications of HK.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 107 ◽  
Author(s):  
Iman Saad Ahmed ◽  
Hassan Medhat Rashed ◽  
Hend Fayez ◽  
Faten Farouk ◽  
Rehab Nabil Shamma

In this study, water-soluble chitosan lactate (CL) was reacted with lactobionic acid (LA), a disaccharide with remarkable affinity to hepatic asialoglycoprotein (ASGP) receptors, to form dual liver-targeting LA-modified-CL polymer for site-specific drug delivery to the liver. The synthesized polymer was used to encapsulate baicalin (BA), a promising bioactive flavonoid with pH-dependent solubility, into ultrahigh drug-loaded nanoparticles (NPs) via the ionic gelation method. The successful chemical conjugation of LA with CL was tested and the formulated drug-loaded LA-modified-CL-NPs were assessed in terms of particle size (PS), encapsulation efficiency (EE) and zeta potential (ZP) using full factorial design. The in vivo biodistribution and pharmacokinetics of the designed NPs were assessed using 99mTc-radiolabeled BA following oral administration to mice and results were compared to 99mTc-BA-loaded-LA-free-NPs and 99mTc-BA solution as controls. Results showed that the chemical modification of CL with LA was successfully achieved and the method of preparation of the optimized NPs was very efficient in encapsulating BA into nearly spherical particles with an extremely high EE exceeding 90%. The optimized BA-loaded-LA-modified-CL-NPs showed an average PS of 490 nm, EE of 93.7% and ZP of 48.1 mV. Oral administration of 99mTc-BA-loaded-LA-modified-CL-NPs showed a remarkable increase in BA delivery to the liver over 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA oral solution. The mean area under the curve (AUC0–24) estimates from liver data were determined to be 11-fold and 26-fold higher from 99mTc-BA-loaded-LA-modified-CL-NPs relative to 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA solution respectively. In conclusion, the outcome of this study highlights the great potential of using LA-modified-CL-NPs for the ultrahigh encapsulation of therapeutic molecules with pH-dependent/poor water-solubility and for targeting the liver.


Planta Medica ◽  
2019 ◽  
Vol 85 (16) ◽  
pp. 1233-1241
Author(s):  
Michael Kirchinger ◽  
Lara Bieler ◽  
Julia Tevini ◽  
Michael Vogl ◽  
Elisabeth Haschke-Becher ◽  
...  

AbstractThe chroman-like chalcone Xanthohumol C, originally found in hops, was demonstrated to be a potent neuroregenerative and neuroprotective natural product and therefore constitutes a strong candidate for further pharmaceutical research. The bottleneck for in vivo experiments is the low water solubility of this chalcone. Consequently, we developed and validated a suitable formulation enabling in vivo administration. Cyclodextrins were used as water-soluble and nontoxic complexing agents, and the complex of Xanthohumol C and 2-hydroxypropyl-β-cyclodextrin was characterized using HPLC, HPLC-MS, NMR, and differential scanning calorimetry. The water solubility of Xanthohumol C increases with increasing concentrations of cyclodextrin. Using 50 mM 2-hydroxypropyl-β-cyclodextrin, solubility was increased 650-fold. Furthermore, in vitro bioactivity of Xanthohumol C in free and complexed form did not significantly differ, suggesting the release of Xanthohumol C from 2-hydroxypropyl-β-cyclodextrin. Finally, a small-scaled in vivo experiment in a rat model showed that after i. p. administration of the complex, Xanthohumol C can be detected in serum, the brain, and the cerebrospinal fluid at 1 and 6 h post-administration. Mean (± SD) Xanthohumol C serum concentrations after 1, 6, and 12 h were determined as 463.5 (± 120.9), 61.9 (± 13.4), and 9.3 (± 0.8) ng/mL upon i. v., and 294.3 (± 22.4), 45.5 (± 0.7), and 13 (± 1.0) ng/mL after i. p. application, respectively. Accordingly, the formulation of Xanthohumol C/2-hydroxypropyl-β-cyclodextrin is suitable for further in vivo experiments and further pharmaceutical research aiming for the determination of its neuroregenerative potential in animal disease models.


2019 ◽  
Vol 9 (5) ◽  
pp. 419-428
Author(s):  
Li Li ◽  
Chunjiao Pan ◽  
Zhongqiu Guo ◽  
Bingmi Liu ◽  
Hao Pan ◽  
...  

In this study, graphene oxide was synthesized using the Hummers method, and stable and homogeneous graphene oxide aqueous solutions were obtained through mechanical stirring and ultrasonic stripping. In conjunction with our previous studies, graphene oxide-loaded insoluble compound delivery systems were prepared to verify the in vivo release profiles of the graphene oxide delivery system. Several insoluble compounds including imatinib, nilotinib, erlotinib, gefitinib, and afatinib were selected for loading and in vitro graphene oxide release assays to study the non-covalent adsorption mechanisms. Computer simulations were employed for validation processes. For in vivo release assays, the T1/2 values of the poorly water soluble groups were 1.104 ± 0.18 h and the Cmax was 2.600 ± 2.06 mg/L. In previous assays, compounds with high water solubility supported by graphene oxide were released and detected in vivo. The solubility of the compound and its binding force with the carrier played a crucial role in release. The results of graphene oxide loading experiments showed that the maximum loading and entrapment efficiencies of the insoluble model compounds with similar aromatic rings were comparable. Under basic conditions, the in vitro release rates and maximum release levels of amino pyrimidine were elevated. In contrast, quinazoline release declined. Combined with computer simulations, π–π stacking was identified as the dominant mechanism for adsorption onto graphene oxide. Both hydrogen bonding and cation-π bonds played an auxiliary reinforcing role, and the two were regarded as antagonistic.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


Sign in / Sign up

Export Citation Format

Share Document